BCKW Combinator Calculus
An Examination of Haskell Curry’'s Ph.D. Thesis

Charles Averill (UTD) BCKW Combinator Calculus April 2023

Background

History

The year is 1930. Haskell Curry is a Ph.D. student at the University
of Géttingen studying under legendary mathematician David Hilbert
and working with legendary mathematician Paul Bernays.

6 years prior, Moses Schonfinkel publishes a paper called "On the
building blocks of mathematical logic,” attempting to formalize the
description of mathematical propositions, but failing to go into
enough detail.

Hilbert is famous for striving to describe the foundations of
mathematics at the deepest level,! Bernays is familiar with
Schonfinkel's work, and Curry has already written a small preliminary
paper expanding on Schonfinkel’s discoveries.

The setting is perfect to finally formalize the construction of
mathematical propositions.

!Unfortunately, mathematician Kurt Godel will curtail this effort in 1931 with
his famed incompleteness theorem.
Charles Averill (UTD) BCKW Combinator Calculus April 2023

Background

People

Hilbert

Church Turing Schénfinkel Godel
Charles Averill (UTD) BCKW Combinator Calculus April 2023

Background

Schonfinkel's Discoveries

Charles Averill (UTD) BCKW Combinator Calculus April 2023

Background

Combinator Example

Charles Averill (UTD) BCKW Combinator Calculus April 2023

Background

Aside: Currying

We need a concept called "currying” to continue (yes, it's named after
Haskell Curry).

Exercise: 2 stars, advanced (currying)

The type X - ¥ —+ Z can be read as describing functions that take two arguments, one of type X and another of type ¥,
and return an output of type Z. Strictly speaking, this type is written X - (Y - Z) when fully parenthesized. That is, if
we have f : X~ Y~ Z and we give f an input of type X, it will give us as output a function of type ¥ - Z. If we then
give that function an input of type Y, it will return an output of type Z. That Is, every function in Coq takes only one
input, but some functions return a function as output. This is precisely what enables partial application, as we saw
above with plus3.

By contrast, functions of type X x Y - Z -- which when fully parenthesized Is written (X x Y) - Z - require their single
input to be a pair. Both arguments must be given at once; there Is no possibility of partial application.

Itis possible to convert a function between these two types. Converting from X = Y - Zto X - Y —~ Z s called currying,
in honor of the logician Haskell Curry. Converting from X -+ Y = Z to X = Y ~ Z s called uncurrying.

We can define currying as follows:

Definition prod curry { : Type}
YY) o Z = f (x,

main(argc, argv!/|) has type — —

Charles Averill (UTD) BCKW Combinator Calculus April 2023

Background

Combinator Example

Charles Averill (UTD) BCKW Combinator Calculus April 2023

Background

Why it Matters

Schonfinkel came up with these rules in 1924, but he didn't write a true

proof that the combinators could actually be used to do anything

interesting. Curry actually wrote a fairly scathing review in his thesis:
“Because Schénfinkel has in no way shown how the introduction
of the other fundamental concepts is to be avoided, and because
he cannot define them from others, he has not justified his claim.
In fact he has achieved only a new and inconvenient notation.”

If my Ph.D. advisor were David Hilbert, I'd probably be dissatisfied with

this too. Hilbert sought a way to formalize the description of mathematics
p)

such that we could ensure that it had no inconsistencies or paradoxes.

2See Hilbert's Program
Charles Averill (UTD) BCKW Combinator Calculus April 2023

https://en.wikipedia.org/wiki/Hilbert%27s_program

Curry’'s Approach

I'm not going to walk you through all of Curry's thesis for a few reasons:
It's a Ph.D. thesis
It is deceptively simple towards the beginning

You should read it for yourself here:
https://www.charles.systems/Combinators

Instead I'm going to broadly summarize his strategy for proving that
combinators are Turing-complete.3

3Fun fact: Turing machines weren’t proposed until 1936. Turing-completeness ¥

just means that a system can perform any decidable computation!

Charles Averill (UTD) BCKW Combinator Calculus April 2023

https://www.charles.systems/Combinators

The Thesis

Chapter 1. General Foundations

Most of Chapter 1 §A, B explain the need for such a formalization, and lay
out philosophical groundwork for the rest of the thesis. Some big
concepts:

A good system of mathematics has few axioms (statements assumed
to be true) without forfeiting any generality

A good system of mathematics eliminates paradoxes that arise from
the "prelogic” that exists underneath mathematics*

Contradictory concepts (like P & !P = True) are not inherently
meaningless and cannot be disregarded

§C evaluates Schonfinkel’s approach and propose new axioms to build off

of. §D proposes and proves theorems regarding the equality of sequences
of combinators.

4See Russel’s Paradox

F(¢) = not ¢(), F(F) = not F(F)

Charles Averill (UTD) BCKW Combinator Calculus April 2023

https://en.wikipedia.org/wiki/Russell%27s_paradox

The Thesis

Chapter 2. The Theory of Combinators

Curry starts off this chapter with a bold claim: that anything derivable in
the standard frame of mathematics is derivable in the system of
combinators.

The theorems in §C deal with the equivalence of combinators after
they're reduced,® the idea of "normal” combinations (too complicated
to explain here), sequences of variables called "groupings,” and
combinations with no parentheses called "transformations.”

§D is where it starts to get more interesting (in my opinion). Curry
uses the theorems from the previous three sections to prove that
combinators can represent a theorem of commutativity. The following
theorems and those in the final §E prove more concepts about
regularity and the behavior between sequences of regular
combinations.

*As in WBKCW — BKKCW — K(KC)W — KC

Charles Averill (UTD) BCKW Combinator Calculus April 2023

The Thesis

And Then What?

Hang on a second. Curry said that anything we could write in ordinary
logic could be written with combinators, but he never actually proved it!

Place yourself in the shoes of early 20t" century mathematicians. Set
theory was proposed by Georg Cantor in 1874, and in 1900 it was proven
to be inconsistent due to Russell's paradox. In those 26 years, there was
no proof that set theory was complete or decidable or anything like that!
Just hopes and dreams and duct tape.

The idea of classifying a model of computation as "complete” or
"consistent” or "decidable” was postulated by Hilbert in 1900 but would
not be formally proposed until 1936°.

BCKW is Turing-complete because SKI is Turing-complete because
lambda calculus is Turing-complete.
Take my word for it or read Turing's Proof.

5See the Church-Turing Thesis
Charles Averill (UTD) BCKW Combinator Calculus April 2023

https://slideplayer.com/slide/7409174/
https://www.jstor.org/stable/2268280
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

The Thesis

Numbers

Charles Averill (UTD) BCKW Combinator Calculus April 2023

https://en.wikipedia.org/wiki/Church_encoding

Conclusion

Materials

Charles Averill (UTD) BCKW Combinator Calculus April 2023

https://www.overleaf.com/read/rzhdyjvrzbgy
https://www.amazon.com/dp/1848902026
https://www.github.com/CharlesAverill/HCLT
https://en.wikipedia.org/wiki/B,_C,_K,_W_system
http://dirk.rave.org/combinatris/

	Background
	The Thesis
	Conclusion

