
CS 6324 - Information Security

Project 1: Encrypted File System Report
Charles Averill

charles@utdallas.edu

Field Length (bits) Start End
Username 1024 0 1023

Salt 1024 1024 2047
AES-CTR IV 128 2048 2175
HMAC 256 2176 2431

Table 1. Public metadata fields

Field Length (bits) Start End
File length 32 0 31

Password hash 256 32 287

Table 2. Secret metadata fields

1. Design

1.1. Metadata

Metadata is stored in a file named meta in the file’s directory. Public
fields are stored as described in Table 1. Secret fields are assembled
as described in Table 2, hashed using AES-ECB, and stored directly
following the public fields.

1.2. User Authentication

The encrypted file’s password salt is stored publicly as described in
Table 1. Its password hash is encrypted via AES-ECB and stored as
described in Table 2.
When performing actions requiring authentication, the salt is re-

trieved from public metadata. The current user’s plaintext password
is concatenated with the salt and hashed with SHA256. This hash is
then used as a decryption keywithAES-ECB to decrypt the file’s secret
metadata. The stored hash is then compared against the computed
hash, and authentication succeeds if the two are identical.

1.3. Encryption

When storing files, the full file plaintext is split into blocks of 1KB
each. Each of these blocks is encrypted via AES-CTR as described in
Algorithm 1. Because AES-ECB is only being called on the initializa-
tion vectors, index, and password hash, AES-CTR functions as both
the encryption and decryption procedure, as each of these fields is
consistent in both scenarios.
This implementation is secure, even if an adversary has access to all

of the encrypted blocks, because each of the subsequences of length
16 in the plaintext is encrypted with the index of the subsequence.
This ensures that blocks of similar plaintext have unique encrypted
equivalents, preventing an attacker fromextracting secret information
about the encrypted file by aggregating knowledge of each block.

Algorithm 1 Implementation of the AES-CTR algorithm using AES-
ECB as a backend
⊳ Performed on each 16-byte subsequence of AES-CTR’s input array
procedure AES-CTR-Block(𝑎𝑟𝑟, ℎ𝑎𝑠ℎ, 𝐼𝑉, 𝑖𝑑𝑥)

𝐼𝑉 ← EncryptAES𝐸𝐶𝐵(𝐼𝑉 + 𝑖𝑑𝑥, ℎ𝑎𝑠ℎ)
return 𝐼𝑉 ⊕ 𝑎𝑟𝑟

⊳ Used for both encryption and decryption
procedure AES-CTR(𝑎𝑟𝑟, ℎ𝑎𝑠ℎ, 𝐼𝑉)

𝑜𝑢𝑡 ← []
for 𝐵 = sub-array of length 16 ∈ 𝑎𝑟𝑟 do

𝑜𝑢𝑡 ← 𝑜𝑢𝑡‖AES-CTR-Block(𝐵, ℎ𝑎𝑠ℎ, 𝐼𝑉, 𝐵.𝑖𝑑𝑥)
return 𝑜𝑢𝑡

1.4. File Length Concealment

With my encryption scheme, the length of a file can only be known
within a range of 1KB. This is because plaintext is padded before
being encrypted via AES-CTR, meaning each block of the file has the
same length when encrypted.

1.5. Message Authentication

Message authentication is accomplished with a standard hash-based
message authentication code (HMAC) implementation. This imple-
mentation is described in Algorithm 2.
After modifications to file contents via Write and Cut, the value

of the HMAC stored in secret metadata is recomputed using the new
contents of the file.
Algorithm 2Message Authentication Scheme
Require: ℎ𝑎𝑠ℎ.𝑙𝑒𝑛𝑔𝑡ℎ = 32 ⊳ SHA256 key length in bytes
procedure HMAC(𝑚𝑒𝑠𝑠𝑎𝑔𝑒, ℎ𝑎𝑠ℎ)

𝑜𝑘𝑒𝑦 ← 𝑘𝑒𝑦 ⊕ 0x5C
𝑖𝑘𝑒𝑦 ← 𝑘𝑒𝑦 ⊕ 0x36
return SHA256(𝑜𝑘𝑒𝑦‖SHA256(𝑖𝑘𝑒𝑦,𝑚𝑒𝑠𝑠𝑎𝑔𝑒))

1.6. Efficiency

Create and Length are𝑂(1). All loops within encryption functions
are performed on constant-length structures and known values.
Read is 𝑂(𝑙𝑒𝑛). Password verification and length checks are con-

stant time as in Create and Length. Its loop is dependent on the
number of blocks being read, which is computed from 𝑙𝑒𝑛.
Write is 𝑂(𝑙𝑒𝑛 + Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)). Its main loop

is dependent on the number of blocks being read or written, which
is computed from 𝑙𝑒𝑛. The length update in Write is constant-time,
and the integrity value update is 𝑂(Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑),
as it reads the entire file’s contents via Read and calls SHA256 on
them.
CheckIntegrity is 𝑂(Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)). It reads

the entire file’s contents via Read, and then performs a constant-time
check against the stored integrity value.
Cut is 𝑂(Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)). Its core behavior is ac-

tuall 𝑂(1) as it only ever modifies one block of the file. However, its
update to the stored integrity value in the file’s metadata relies on
reading the contents of the entire file.
The implementation I have chosen is maximally storage-efficient,

as it only stores as much data as is required to decrypt and retrieve
the plaintext.
An implementation that reaches maximum speed efficiency must

necessarily sacrifice security. Backtracking to use AES-ECB for the
plaintext encryption and sacrificing message authentication allows
for an 𝑂(1) Cut and an 𝑂(𝑙𝑒𝑛)Write.
One update that could improve my speed efficiency would be to

compute HMAC on the ciphertext of the encrypted file, rather than
decrypting and re-hashing the plaintext. I chose to perform HMAC
the less-efficient way because it reduces the complexity of my code,
reducing the risk that the code is incorrect.

CS 6324 - Information Security University of Texas at Dallas March 2025 1–3



Project 1: Encrypted File System Report

2. Pseudocode

Algorithm 3 File Creation
procedure Create(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)

⊳ Create folder for blocks and metadata file
CreateFolder(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒)
𝑚𝑒𝑡𝑎 ← CreateFile(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒∕"𝑚𝑒𝑡𝑎")
⊳ Generate metadata
𝑠𝑎𝑙𝑡 ← 𝑟𝑎𝑛𝑑𝑜𝑚()
𝑖𝑣 ← 𝑟𝑎𝑛𝑑𝑜𝑚()
ℎ𝑎𝑠ℎ ← SHA256(𝑠𝑎𝑙𝑡‖𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
⊳Write public metadata
Write(𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒,𝑚𝑒𝑡𝑎)
Write(𝑠𝑎𝑙𝑡,𝑚𝑒𝑡𝑎)
Write(𝑖𝑣,𝑚𝑒𝑡𝑎)
Write(HMAC([], ℎ𝑎𝑠ℎ),𝑚𝑒𝑡𝑎)
⊳Write secret metadata (file is currently length 0)
Write(EncryptAES𝐸𝐶𝐵(0‖ℎ𝑎𝑠ℎ),𝑚𝑒𝑡𝑎)

Algorithm 4 Length Extraction
procedure Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)

𝑠𝑎𝑙𝑡 ← read salt from public metadata
ℎ𝑎𝑠ℎ ← SHA256(𝑠𝑎𝑙𝑡‖𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
return DecryptAES𝐸𝐶𝐵(secret metadata, ℎ𝑎𝑠ℎ).𝑙𝑒𝑛𝑔𝑡ℎ

Algorithm 5 Perform a check on the integrity of the encrypted file
contents
procedure CheckIntegrity(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)

𝑠𝑎𝑙𝑡 ← read salt from public metadata
ℎ𝑎𝑠ℎ ← SHA256(𝑠𝑎𝑙𝑡‖𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
𝑓𝑖𝑙𝑒ℎ𝑎𝑠ℎ ← DecryptAES𝐸𝐶𝐵(secret metadata, ℎ𝑎𝑠ℎ).ℎ𝑎𝑠ℎ
⊳ Verify password
if ℎ𝑎𝑠ℎ ≠ 𝑓𝑖𝑙𝑒ℎ𝑎𝑠ℎ then

return PasswordIncorrectException
⊳ Compare stored HMAC and computed HMAC values
𝐻𝑀𝐴𝐶𝑓𝑖𝑙𝑒 ← read HMAC from public metadata
𝑙𝑒𝑛 ← Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠 ← Read(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 0, 𝑙𝑒𝑛, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
𝐻𝑀𝐴𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← HMAC(𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠, ℎ𝑎𝑠ℎ)
return𝐻𝑀𝐴𝐶𝑓𝑖𝑙𝑒 = 𝐻𝑀𝐴𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Algorithm 6 Truncate a file
procedure Cut(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)

𝑠𝑎𝑙𝑡 ← read salt from public metadata
ℎ𝑎𝑠ℎ ← SHA256(𝑠𝑎𝑙𝑡‖𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
𝑓𝑖𝑙𝑒ℎ𝑎𝑠ℎ ← DecryptAES𝐸𝐶𝐵(secret metadata, ℎ𝑎𝑠ℎ).ℎ𝑎𝑠ℎ
𝐼𝑉 ← read IV from public metadata
⊳ Verify password
if ℎ𝑎𝑠ℎ ≠ 𝑓𝑖𝑙𝑒ℎ𝑎𝑠ℎ then

return PasswordIncorrectException
⊳ Read, decrypt, truncate, encrypt, and write new end block
𝑏𝑙𝑜𝑐𝑘𝑒𝑛𝑑 ←

𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘
𝑙𝑒𝑛𝑒𝑛𝑑 ← 𝑙𝑒𝑛𝑔𝑡ℎ mod 𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘
𝑏𝑙𝑜𝑐𝑘𝑝𝑙𝑎𝑖𝑛 ← DecryptAES𝐶𝑇𝑅(𝑏𝑙𝑜𝑐𝑘𝑒𝑛𝑑, ℎ𝑎𝑠ℎ, 𝐼𝑉)
𝑏𝑙𝑜𝑐𝑘𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 ← 𝑏𝑙𝑜𝑐𝑘𝑝𝑙𝑎𝑖𝑛[0 upto 𝑙𝑒𝑛𝑒𝑛𝑑]
Write(EncryptAES𝐶𝑇𝑅(𝑏𝑙𝑜𝑐𝑘𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑, ℎ𝑎𝑠ℎ, 𝐼𝑉), 𝑏𝑙𝑜𝑐𝑘𝑒𝑛𝑑)
⊳ Update length and integrity metadata
Write(EncryptAES𝐸𝐶𝐵(𝑙𝑒𝑛𝑔𝑡ℎ‖ℎ𝑎𝑠ℎ),𝑚𝑒𝑡𝑎)
𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠 ← Read(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 0, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
Write(𝐻𝑀𝐴𝐶(𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠, ℎ𝑎𝑠ℎ),𝑚𝑒𝑡𝑎)

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5

No Boundaries

One Boundary

Multiple Boundaries

Figure 1. All possible read/write accesses

Algorithm 7 Reading Encrypted Data
procedure Read(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑠𝑡𝑎𝑟𝑡, 𝑙𝑒𝑛, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)

𝑠𝑎𝑙𝑡 ← read salt from public metadata
ℎ𝑎𝑠ℎ ← SHA256(𝑠𝑎𝑙𝑡‖𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
𝑓𝑖𝑙𝑒ℎ𝑎𝑠ℎ ← DecryptAES𝐸𝐶𝐵(secret metadata, ℎ𝑎𝑠ℎ).ℎ𝑎𝑠ℎ
𝐼𝑉 ← read IV from public metadata
⊳ Verify password, read bounds
if ℎ𝑎𝑠ℎ ≠ 𝑓𝑖𝑙𝑒ℎ𝑎𝑠ℎ then

return PasswordIncorrectException
else if 𝑠𝑡𝑎𝑟𝑡 + 𝑙𝑒𝑛 > Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑) then

return OutOfBoundsException
𝑏𝑙𝑜𝑐𝑘𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑙𝑜𝑐𝑘𝑒𝑛𝑑 ←

𝑠𝑡𝑎𝑟𝑡

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘
, 𝑠𝑡𝑎𝑟𝑡+𝑙𝑒𝑛
𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

⊳ Decrypt and read one block at a time
𝑜𝑢𝑡 ← []
for 𝑖 = 𝑏𝑙𝑜𝑐𝑘𝑠𝑡𝑎𝑟𝑡 to 𝑏𝑙𝑜𝑐𝑘𝑒𝑛𝑑 do

𝑏𝑙𝑜𝑐𝑘𝑝𝑙𝑎𝑖𝑛 ← DecryptAES𝐶𝑇𝑅(𝑏𝑙𝑜𝑐𝑘𝑖 , ℎ𝑎𝑠ℎ, 𝐼𝑉)
Compute range of read based on cases in Fig. 1
𝑜𝑢𝑡 ← 𝑜𝑢𝑡‖𝑏𝑙𝑜𝑐𝑘𝑝𝑙𝑎𝑖𝑛[𝑟𝑎𝑛𝑔𝑒]

return 𝑜𝑢𝑡

Algorithm 8Writing Encrypted Data
procedureWrite(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑠𝑡𝑎𝑟𝑡, 𝑝𝑙𝑎𝑖𝑛, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)

𝑠𝑎𝑙𝑡 ← read salt from public metadata
ℎ𝑎𝑠ℎ ← SHA256(𝑠𝑎𝑙𝑡‖𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
𝑓𝑖𝑙𝑒ℎ𝑎𝑠ℎ ← DecryptAES𝐸𝐶𝐵(secret metadata, ℎ𝑎𝑠ℎ).ℎ𝑎𝑠ℎ
𝐼𝑉 ← read IV from public metadata
⊳ Verify password, write bounds
if ℎ𝑎𝑠ℎ ≠ 𝑓𝑖𝑙𝑒ℎ𝑎𝑠ℎ then

return PasswordIncorrectException
else if 𝑠𝑡𝑎𝑟𝑡+𝑝𝑙𝑎𝑖𝑛.𝑙𝑒𝑛𝑔𝑡ℎ > Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
then

return OutOfBoundsException
if Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑) = 0 then ⊳ File is empty

for 𝐵 = sub-array of length 𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘 ∈ 𝑝𝑙𝑎𝑖𝑛 do
𝑓 ← CreateFile(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒∕𝐵.𝑖𝑑𝑥)
Write(EncryptAES𝐶𝑇𝑅(𝐵, ℎ𝑎𝑠ℎ, 𝐼𝑉), 𝑓)

else⊳ File already contains data
𝑏𝑙𝑜𝑐𝑘𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑙𝑜𝑐𝑘𝑒𝑛𝑑 ←

𝑠𝑡𝑎𝑟𝑡

𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘
, 𝑠𝑡𝑎𝑟𝑡+𝑙𝑒𝑛
𝑠𝑖𝑧𝑒𝑏𝑙𝑜𝑐𝑘

⊳ Read, decrypt, update, encrypt, write one block at a time
for 𝑖 = 𝑏𝑙𝑜𝑐𝑘𝑠𝑡𝑎𝑟𝑡 to 𝑏𝑙𝑜𝑐𝑘𝑒𝑛𝑑 do

𝑏𝑙𝑜𝑐𝑘𝑝𝑙𝑎𝑖𝑛 ← DecryptAES𝐶𝑇𝑅(𝑏𝑙𝑜𝑐𝑘𝑖 , ℎ𝑎𝑠ℎ, 𝐼𝑉)
Compute range of write based on cases in Fig. 1
𝑏𝑙𝑜𝑐𝑘𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← Overwrite(𝑏𝑙𝑜𝑐𝑘𝑝𝑙𝑎𝑖𝑛, 𝑝𝑙𝑎𝑖𝑛, 𝑟𝑎𝑛𝑔𝑒)
Write(EncryptAES𝐶𝑇𝑅(𝑏𝑙𝑜𝑐𝑘𝑢𝑝𝑑𝑎𝑡𝑒𝑑, ℎ𝑎𝑠ℎ, 𝐼𝑉), 𝑏𝑙𝑜𝑐𝑘𝑖)

⊳ Update length and integrity metadata
𝑙𝑒𝑛 ← max(Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑), 𝑠𝑡𝑎𝑟𝑡+𝑝𝑙𝑎𝑖𝑛.𝑙𝑒𝑛)
Write(EncryptAES𝐸𝐶𝐵(𝑙𝑒𝑛‖ℎ𝑎𝑠ℎ),𝑚𝑒𝑡𝑎)
𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠 ← Read(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 0, 𝑙𝑒𝑛, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
Write(𝐻𝑀𝐴𝐶(𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑠, ℎ𝑎𝑠ℎ),𝑚𝑒𝑡𝑎)

2 CS 6324 - Information Security Averill



Project 1: Encrypted File System Report

3. Variations

1. Suppose that the only write operation that could occur is
to append at the end of the file. How would you change
your design to achieve the best efficiency (storage and
speed) without affecting security?
If the only write operation is an append, this update remains
𝑂(𝑙𝑒𝑛 +Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)), however it is a tighter
upper bound. This is because instead of having to decrypt part
of the file, update it, re-encrypt it, and write it back to the file,
we need only encrypt the appended text and append it to the
existing ciphertext, without sacrificing security.

2. Suppose that we are concerned only about adversaries
who steal the disks. That is, the adversary can read only
one version of the same file. How would you change your
design to achieve the best efficiency?
If an adversary is only concerned with stealing disks, we can
eliminate message authentication entirely, as there is no chance
of files being manipulated (short of cosmic ray bit flips and
failing memory, which are mitigated by ECC memory and main-
tenance). This results in an 𝑂(𝑙𝑒𝑛)Write and an 𝑂(1) Cut.

3. Can you use the CBCmode in the EFS? If yes, describe how
your design would change and analyze the efficiency of
the resulting design. If no, describe why.
Yes, CBC mode could be utilized in the EFS, however with sig-
nificant drawbacks:

• Overwriting, which was 𝑂(𝑙𝑒𝑛) is now
𝑂(Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)), as each block be-
fore the target block must be decrypted to decrypt the
target block

• Corruption in block 𝑛 results in all blocks greater than 𝑛
also becoming corrupted

• Cut remains𝑂(Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)), but is ac-
tually 𝑂(2Length(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)) because the fi-
nal block must be re-encrypted

4. Can you use the ECBmode in the EFS? If yes, describe how
your design would change and analyze the efficiency of
the resulting design. If no, describe why.
No, ECB mode cannot be utilized in the EFS without sacrificing
security requirements. Utilizing ECB mode would reveal mas-
sive amounts of information about the structure of the plaintext,
as identical blocks would have identical ciphertexts.

Averill CS 6324 - Information Security 3


	Design
	Metadata
	User Authentication
	Encryption
	File Length Concealment
	Message Authentication
	Efficiency

	Pseudocode
	Variations

