
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Formally-Verified, Tight Timing Constraints for Machine Code
Anonymous

Abstract
A dependently typed, machine-checked framework is introduced
for verifying timing properties of raw (stripped) machine code bi-
naries within the Rocq interactive theorem-proving environment.
By formalizing instruction timings and integrating them with an
abstract interpreter, it provides high-assurance, high-precision tim-
ing guarantees that are applicable to a wide range of systems. This
verifies that real-time systems and cryptographic algorithms meet
their critical performance and security requirements.

1 Problem and Motivation
Many mission-critical computing systems operate under stringent
timing constraints, where deviations in execution time can have
severe consequences. Two important categories include: (1) real-
time systems, which must meet strict timing deadlines to ensure
correct behavior, and (2) cryptographic systems, which must guard
against information leakage through timing-based side channels.

1.1 Real-Time Systems
Real-time systems underpin a vast array of mission-critical appli-
cations, including avionics, automotive control systems, industrial
automation, and medical devices. In these domains, control loops
and other real-time functions must execute within precise time
intervals to maintain system stability and correctness. Failure to
meet these timing constraints can result in catastrophic failures,
such as aircraft control loss or medical device malfunctions.

Ensuring the correctness of such systems requires not only func-
tional correctness but also formal guarantees on worst-case execu-
tion time (WCET) and schedulability. Traditional WCET analysis
techniques [11], such as control flow analysis and measurement-
based execution time analysis, provide valuable insights, but they
forgo formal guarantees in favor of code coverage and automation.

1.2 Constant-Time Cryptography
Cryptographic implementations present a different but equally
pressing challenge. Timing side-channel attacks exploit variations
in execution time to infer secrets, breaking confidentiality even
when cryptographic algorithms are mathematically sound.

Classic attacks, such as Kocher’s timing attacks on RSA [5],
demonstrate that even minute timing differences in modular arith-
metic operations can leak secret key bits. More recent work has
extended these attacks to cache-based timing attacks [1, 9] and
branch prediction or speculative execution attacks, such as Spectre
andMeltdown [4]. Defenses against timing attacks require ensuring
that execution time remains independent of secret data, but achiev-
ing this property in practice is difficult due to microarchitectural
effects that are often poorly documented and hardware-specific.

1.3 Motivation
Traditional verification techniques focused on bug-finding are often
insufficient for obtaining airtight, machine-checkable formal guar-
antees about timing properties. For example, real-time verification
methods rely on conservative WCET bounds that may not accu-
rately reflect true execution behavior. Cryptographic verification
techniques, such as constant-time programming methodologies [7],

Disassembler

User-Defined
Invariant Set

and Proof

Picinae
Formal
Timing

Guarantee

CPU Operational,
Timing Semantics

Abstract
Interpreter

Binary Program

Figure 1: Picinæ Timing Module Pipeline

require careful manual implementation and do not inherently prove
the absence of timing leaks. The dearth of comprehensive formal
methods for timing verification of binaries leaves many safety-
critical and security-critical systems vulnerable, calling into ques-
tion their reliability and trustworthiness.

Addressing this problem requires new formal verification tech-
niques capable of reasoning about execution time in a mathemati-
cally rigorous manner. Such techniques must account for hardware-
level execution behaviors while remaining applicable to real-world
software development workflows. The development of precise, au-
tomated proof techniques for timing correctness will not only im-
prove safety in real-time systems but also enhance security in cryp-
tographic implementations, ensuring that these systems can be
trusted even in adversarial environments.

2 Background and Related Work
2.1 Picinæ
Our work builds upon Picinæ [3], a framework within the Rocq
interactive theorem prover (ITP) for the development of functional
correctness proofs for arbitrary (e.g., non-compiled) machine code.
2.1.1 Lifting. Picinæ operates on a low-level intermediate language
(PicinæIL) formalized within the Rocq proof assistant. PicinæIL is
similar to other ISA-modeling ILs, such as BIL [2] and Ghidra P-
code [6], but is dependently typed and strongly normalizing to
comply with Rocq’s foundations in the calculus of inductive con-
structions. It represents machine instructions as structured, effect-
preserving transformations of an abstract state. Programs are lifted
to a Rocq-readable format expressed as a partial map from memory
addresses 𝑎 to IL fragments 𝑞 that encode the operational effect
of the instruction at 𝑎 on an abstract cpu state. The IL encodes
effects via fundamental constructs such as assignments, jumps, con-
ditionals, and bounded repetitions. Instruction-internal loops are
explicitly bounded to guarantee strong normalization, eliminating
the need for termination proofs of loop-free code fragments.

Expressions in the IL comprise state element reads, memory
operations, and modular arithmetic. Certain operations, such as

1

Anonymous

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

those that affect architecture-specific flags, are modeled as non-
deterministic assignments to account for undefined behavior in
the underlying ISA. Picinæ’s memory model is purely functional—
memory updates are immutable transformations that return a new
state rather than destructively modifying a global state.
2.1.2 Invariants. To facilitate formal reasoning about lifted code,
Picinæ introduces an invariant set framework. Invariant sets define
untrusted, machine-verified properties asserted at specific points
in the program’s execution, forming a basis for inductively proving
security and correctness guarantees. They are implemented as a
partial map from virtual addresses to cpu state propositions, where
propositions may range over Rocq’s full higher-order, dependent
propositional specification language.
2.1.3 Abstract Interpretation. Picinæ includes a verified symbolic
interpreter to analyze lifted machine code within a Rocq proof
context. This interpreter enables stepwise execution of an abstract
machine state, incorporating Rocq proof meta-variables where nec-
essary to model unknowns. It leverages dependent typing to au-
tomatically attach ISA-specific properties to untyped binary state
elements within each proof context. For example, 𝑤-bit register
values have Σ-type {𝑛 :N | 𝑛 < 2𝑤}. This affords machine-checked
proofs of code properties that rely on ISA-specific properties.

Because the interpreter introduces proof goals corresponding
to all possible cases of each branch, complete code coverage is
guaranteed—any coverage lapse yields an unprovable proof goal
(e.g., a branch to an address with no invariants). Invariant sets
thereby prove coverage completeness.
2.1.4 Traces. Program traces in Picinæ are constructed by follow-
ing execution paths within the lifted IL representation. They capture
the sequence of state transitions induced by instruction execution,
providing a formal basis for reasoning about control flow and pro-
gram behavior. By integrating trace analysis with invariant reason-
ing, Picinæ facilitates proofs of temporal correctness, security, and
reachability properties expressible in LTL [10].

2.2 Existing Timing Approaches
2.2.1 Abstract Interpretation statically approximates the behavior
of a program by interpreting it with abstract program values. The
goal is to determine an upper bound for execution times by using
control-flow analysis, where paths through the program are mod-
eled as a set of constraints. In practice, abstract interpretation often
faces challenges due to processor-specific models and the complex-
ity of accurately modeling control flow and timing anomalies.
2.2.2 Measurement-Based Analysis involves executing the code on
the actual hardware or a simulation, and measuring the execution
time for various input sets, recording the maximum execution time
observed. Although this can more easily produce anecdotal results
for complex systems, it is not a comprehensive search over code
paths and offers no formal guarantees. The method’s precision can
be improved by collecting more measurements, including varying
the initial processor state or by analyzing multiple test cases.

3 Approach and Novelty
Our approach extends Picinæ with a timing module that models
a cpu’s timing behavior to provide machine-checkable reasoning
power for timing properties. It provides high-assurance timing
guarantees for machine code through a rigorous pipeline that pre-
vents false assurances and is approachable to a wider user base
than standard formal verification tasks.

3.1 Instruction Timing
3.1.1 Units. We select cpu cycle counts as our unit of time because
they provide a granular, consistent measure of execution that is
translatable to specific hardware behavior. Unlike higher-level ab-
stractions, such as wall-clock time, cycle counts capture the precise
cost of instruction execution, including factors like pipeline stages
and memory accesses. This enables a more accurate analysis of per-
formance and resource utilization, crucial for ensuring predictable
behavior in real-time systems. Additionally, cycle counts constitute
a standard unit that is universally applicable across many different
processors and configurations, facilitating actionable comparisons
and optimizations.
3.1.2 CPU Selection. We choose the NEORV32 RISC-V cpu for our
analysis because of its focus on high-reliability, timing-sensitive
computations. The NEORV32’s timing behavior is documented as
a detailed datasheet [8] that emphasizes analysis-amenable proper-
ties, such as non-speculative execution.
3.1.3 Implementation. We encode instruction timings as a Rocq
function that maps an instruction’s type, arguments, and additional
parameters like memory latency, to its cycle count. The cycle count
computation takes into account special instructions such as CLZ
(count leading zeros) and shift operations, which require the analy-
sis of the immediate value or register values for determining their
respective latencies.

In this way our approach offers generalized timing guarantees
as a formula whose parameters can include hardware-specific con-
ditions and tolerances when necessary. Such a formula reveals
how the parameters must be constrained to achieve desired timing
properties, such as worst-case bounds or zero information leakage.

3.2 Trace Timing
Extending Picinæ’s symbolic interpreter to model timing proper-
ties entails designing and implementing a new instruction timing
function onto the cpu trace, yielding a list of cycle counts. This
list is then summed, providing the total number of cycles taken
to reach the exit point of a function starting from an entry point.
Timing properties are universal quantifications over traces, thereby
expressing properties of all possible executions of the code.

In our timing proofs, the traces are abstract cpu state histories.
This allows for the trace of the entire program to carry information
about all possible inputs and control flow paths, ensuring that the
trace timing functionality is comprehensive.

3.3 Proof Structure
Picinæ timing proofs tend to be considerably more amenable to
proof automation than full functional correctness proofs. Figure 2
illustrates via an example loop that implements Peano addition,
and Figure 3 shows a suitable invariant set for the code, consisting
of a precondition, loop invariant, and postcondition.

The precondition summarizes the timing behavior of the two
instructions before the loop. The loop invariant characterizes the
loop’s timing behavior and tracks critical information for loop
termination. It proposes that the cycle count up to the loop’s initial
branch is equal to 𝑡0+ (𝑐0−𝑐)𝑡 , where 𝑡0, 𝑐0, 𝑐 , and 𝑡 are the pre-loop
time, the initial loop counter, the current loop counter, and the time
of the loop body, respectively. Finally, the postcondition asserts
that the total time taken is equal to 𝑡0 + 𝑐0𝑡 .

2

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

Formally-Verified, Tight Timing Constraints for Machine Code

start:

ori t2 , zero , 1 ; 0

andi t3 , t3, 0 ; 4

add:

beq t0 , t3, end ; 8

addi t1 , t1, 1 ; 12

sub t0 , t0, t2 ; 16

beq t3 , t3, add ; 20

end:

... ; 24

Figure 2: Peano addition assembly code implementation

(* x, y are the addition operands *)
Definition timing_invs (p:addr) (x y:N) (t:trace) :=
let tb := 5+(ML-1) in (* time of a taken branch *)
match t with (Addr a, s) :: t' ⇒ match a with
| 4 ⇒ Some (s R_T0 = x ∧ s R_T2 = 1 ∧

cycle_count t' = 2 + 2)
| 8 ⇒ Some (s R_T2 = 1 ∧ s R_T3 = 0 ∧ s R_T0 ≤ x ∧

(* 2+2+(x-T0) * (3+2+2+(5+(ML-1)) *)
cycle_count t' = 4 + (x - T0) * (7 + tb))
(* 2+2+(5+(ML-1)) + x * (3+2+2+(5+(ML-1))) *)

| 24 ⇒ Some (cycle_count t' = 4 + tb + x * (7 + tb))
| _ ⇒ None end | _ ⇒ None end.

Figure 3: Invariant set for the addloop code in Fig. 2

Theorem addloop_timing:
∀ s p t,
satisfies_all
lifted_addloop (* lifted code *)
(timing_invs p (s R_T0) (s R_T1)) (* invariants *)
addloop_exit (* exit point *)
t. (* trace *)

Proof.
(* Address 4 *) repeat step; psimpl; subst; lia.
(* Address 8 (break/loop cases) *) whammer.
(* Postcondition *) whammer.

Qed.

Figure 4: Abbreviated proof of Fig. 3 timing properties

The structure of the invariant set directly follows from the con-
trol flow graph (CFG) of addloop. The proof’s structure is iso-
morphic to the invariant set’s structure, requiring only standard
machinery of Rocq’s proof system and Picinæ ’s automatic binary
arithmetic simplifier, and follows directly from the CFG.

Picinæ’s abstract interpreter provides the step tactic, which ad-
vances the cpu state by one instruction. The core of most timing
proofs consists of stepping forward until an invariant is reached
(repeat step), auto-simplifying the binary arithmetic expressions
accumulated during the steps (psimpl), and then generating a proof
by reflexivity of the invariant-defined timing expression’s equality
to the proof-generated timing expression, often via Rocq’s solver
for linear integer arithmetic, lia. All three of these steps are largely
automated—we provide a tactic whammer that performs these ac-
tions automatically, as well as a lower-level tactic hammer that
makes fewer assumptions about the goal. These commonalities
between timing proofs, in combination with our automation tac-
tics, result in a straightforward path toward high-assurance timing
proofs for arbitrary machine code.

4 Results and Contributions
Our Picinæ timing module allows software developers to obtain
high-assurance timing guarantees for mission-critical machine code
via an extension of the Picinæ system. Its timing guarantees are eas-
ily interpreted by a developer familiar with assembly languages, and
proofs are easily developed even by those with limited knowledge
of formal verification and ITPs. To demonstrate, we next present
two examples of real-world code for which we have developed
timing proofs.

4.1 FreeRTOS Context Switcher
FreeRTOS’s vTaskSwitchContext prepares the cpu for a context
switch between tasks. This function contains several branch condi-
tions that appear in the final timing expression, as well as checks
for stack overflows that block further execution when triggered.
Additionally, the conditions of these branches and checks deref-
erence memory, so rudimentary memory safety subproofs were
required for the timing expression to be parametrized only over the
initial memory state, for which a near-comprehensive automation
tactic was developed. The timing expression for this function is
parametrized by several values in static memory.

4.2 ChaCha20 Encryption Cipher
Our secondary example is the ChaCha20 encryption cipher. This
proof was completed in one month by a team of four first-year
graduate students who received roughly eight hours of training on
Rocq and Picinæ. Due to limited availability of SSL libraries that
compile to RISC-V, our ChaCha20 implementation is written by
hand from the RFC [7]. This implementation contains a loop with a
constant iteration count, as well as a function call, which required
verifying the timing properties of call-return semantics. Its timing
expression is parametrized only by the length of the plaintext,
proving that the implementation of the algorithm is immune to
timing attacks, assuming it is run on a cacheless, non-speculatively
executing RISC-V processor.

4.3 Future Work
In future work we plan to automate the creation of timing invari-
ants for a subset of common-case binary codes. This automation,
accomplished by locating basic blocks and analyzing CFGs, will
reduce the workload required to write new timing proofs, and au-
tomate most or all of the proof process for simple examples. Given
their predictable structure, we expect that these invariants could
even be generated by large language models. Because invariants
remain untrusted (since they undergo machine verification), this
sacrifices no assurance for the end-user.

Thememory safety subproofs required for vTaskSwitchContext
hint that a standardized representation of static memory layout,
accompanied by supporting proof automation, could greatly reduce
the proof load for memory-sensitive code.

Integration with common static analysis tools such as Ghidra
will further simplify the interface for these proofs, offering the
capability of high-assurance timing proofs for a larger audience.

Finally, comparing the times revealed in timing proofs against
experiments run on real hardware will further support the abstract
conclusions derived by our system.

3

Anonymous

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

References
[1] Daniel J. Bernstein. 2005. Cache-timing Attacks on AES. Technical Report. The

University of Illinois at Chicago. cr.yp.to/antiforgery/cachetiming-20050414.pdf.
[2] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.

BAP: A Binary Analysis Platform. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verification (CAV). 463–469.

[3] Kevin W. Hamlen, Dakota Fisher, and Gilmore R. Lundquist. 2019. Source-free
Machine-checked Validation of Native Code in Coq. In Proceedings of the 3rd ACM
Workshop on Forming an Ecosystem Around Software Transformation (FEAST).
25–30.

[4] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,Werner Haas,
MikeHamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2020. Spectre Attacks: Exploiting Speculative Execution.
Communications of the ACM (CACM) 63, 7 (2020), 93–101.

[5] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO). 104–113.

[6] National Security Agency. 2017. P-Code Reference Manual. spinsel.dev/assets/
2020-06-17-ghidra-brainfuck-processor-1/ghidra_docs/language_spec/html/
pcoderef.html.

[7] Yoav Nir and Adam Langley. 2015. ChaCha20 and Poly1305 for IETF Protocols.
RFC 7539.

[8] Stephan T. Nolting. 2025. The NEORV32 RISC-V Processor - Datasheet. stnolting.
github.io/neorv32.

[9] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In Proceedings of the the Cryptographers’ Track at
the RSA Conference on Topics in Cryptology (CT-RSA). 1–20.

[10] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (FOCS). 46–57.

[11] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström. 2008. The Worst-case Execution-time Problem—Overview
of Methods and Survey of Tools. ACM Transactions on Embedded Computing
Systems (TECS) 7, 3 (2008).

4

cr.yp.to/antiforgery/cachetiming-20050414.pdf
spinsel.dev/assets/2020-06-17-ghidra-brainfuck-processor-1/ghidra_docs/language_spec/html/pcoderef.html
spinsel.dev/assets/2020-06-17-ghidra-brainfuck-processor-1/ghidra_docs/language_spec/html/pcoderef.html
spinsel.dev/assets/2020-06-17-ghidra-brainfuck-processor-1/ghidra_docs/language_spec/html/pcoderef.html
stnolting.github.io/neorv32
stnolting.github.io/neorv32

	Abstract
	1 Problem and Motivation
	1.1 Real-Time Systems
	1.2 Constant-Time Cryptography
	1.3 Motivation

	2 Background and Related Work
	2.1 Picinæ
	2.2 Existing Timing Approaches

	3 Approach and Novelty
	3.1 Instruction Timing
	3.2 Trace Timing
	3.3 Proof Structure

	4 Results and Contributions
	4.1 FreeRTOS Context Switcher
	4.2 ChaCha20 Encryption Cipher
	4.3 Future Work

	References

