
VOLPIC: Verifying Lifted Pascal in Coq
Charles Averill

charles@utdallas.edu
University of Texas at Dallas

ABSTRACT
VOLPIC is a new Coq-based framework for lifting and verifying
Pascal code. VOLPIC provides a pipeline to convert Pascal code
into native Coq, formally prove correctness specifications, then
extract into modern, verified OCaml to further improve maintain-
ability. This is demonstrated with a proof of partial correctness
for a function lifted from Pascal code. Pascal is a critical target
for machine-checked verification due to its use in many common
userspace applications such as TEX and Photoshop, in addition to
its use in military organizations.

1 PROBLEM AND MOTIVATION
Although Pascal has declined in popularity over time in both indus-
trial and academic contexts, a large amount of legacy code written
during the height of its use remains a large part of digital infrastruc-
ture today. In fact, Pascal is one of 10 higher-order programming
languages permitted by the US Department of Defense for mission-
critical software development[7].

In some forms, formal verification is a viable technique for
retrofitting security to existing code. Because proofs about code
can exist outside of the codebase, verification can be independent
of software development. However, few tools exist to formally ver-
ify Pascal code, and none provide the high level of assurance that
Coq provides with its minimal trusted computing base. Designing
tools to promote the verification of Pascal code will afford higher
assurance for mission-critical systems containing legacy and new
Pascal components.

2 BACKGROUND AND RELATEDWORK
There are multiple programs that transpile code from other lan-
guages into Coq for the purpose of verification. For example, coq-
of-ocaml [1] and hs-to-coq [6] transpile OCaml and Haskell to Coq,
respectively. Transpilation is more challenging when the source
language is dissimilar to Coq (such as low-level imperative lan-
guages like C and Pascal), making the lifting process more difficult
and often error-prone.

Another common approach encodes the semantics of the source
language in Coq (cf. [5]). A pitfall of semantic encoding is that a
sizeable custom theorem library is required to feasibly build proofs
that utilize the complex types and relations introduced in the lan-
guage semantics. Additionally, the trusted computing base becomes
much larger, as the encoded language semantics must match what
the language’s compiler actually computes, and the correctness of
the lifter from source code to a Coq data structure becomes critical.

A third approach involves writing native Coq code with the goal
of extracting it to OCaml or Haskell. This is convenient if verifica-
tion is a goal from the start of the project, but has its own drawbacks.
Primarily, there are few languages that can be extracted from Coq
source code, most of which are not frequently-used languages that
can be maintained by many engineers. Furthermore, Coq’s stan-
dard library may be unsuitable for general software development

Coq
Program

Pascal
Program

Free Pascal
Compiler

VOLPIC

FPC Parse
Tree

Coq
Proof
Objects Proofs Written

about Program

Pascal
Binary

OCaml Binary

Verification
Guarantee

Figure 1: Lifting, verification, and extraction pipeline

in certain application domains, complicating software written in
this style.

There have been multiple attempts to verify Pascal code specif-
ically. The Stanford Pascal Verifier [3] implements an interactive
program verification system based on Hoare logic [2]. This system
made significant progress towards general-purpose verification,
but suffers a complex proof checker and a limited assertion lan-
guage compared to modern alternatives. The Pascal-F Verifier [4]
improves some of these issues, but requires verification to be a
core aspect of the development process, and therefore requires
significant Pascal code refactoring prior to verification.

3 APPROACH AND UNIQUENESS
VOLPIC (Verifier Of Lifted Pascal In Coq) aims to provide a seamless
pipeline for lifting, verification, and extraction of Pascal code, and
is composed of three corresponding components for these tasks.
These components and their control flow are displayed in Fig. 1.

3.1 Lifter
VOLPIC’s lifter follows a common pattern for compilers: parse,
translate, and generate:

Parsing is achieved almost entirely within FPC, the Free Pascal
Compiler. FPC provides an option for compiler developers that
dumps a parse tree in a structured log format similar to a type-
annotated concrete syntax tree, or CST . Utilizing FPC for parsing
provides the ability to write proofs about programs at any level
of optimization supported by the compiler. Because it is primarily
used to debug FPC, this format is generally unstable and lacks many
features necessary to transpile programs. As such, we present a
custom fork of FPC that provides a stable tree format with informa-
tion that is missing from the main branch, namely string constant
values and record field accesses, while retaining all modern lan-
guage features. Parsing then continues in the VOLPIC codebase as
the tree format is read into a concrete syntax tree.



Anonymous

function factorial(x: integer) : integer;
begin

factorial := 1;
while 1 <= x do
begin

factorial := factorial * x;
x := x - 1;

end;
end;

Figure 2: Iterative factorial calculator written in Pascal

Definition factorial (VP_store: store) loop_limit :=
let VP_poison := false in
let (VP_store,VP_poison) :=

(("VP_result" !-> VInteger 1; VP_store),VP_poison) in
match
while (fun VP_store => 1 <=? get_int VP_store "VP_X")
with VP_store upto loop_limit begin fun VP_store =>
let VP_store := ("VP_result" !-> VInteger (get_int VP_store

"VP_result" * get_int VP_store "VP_X"); VP_store) in
("VP_X" !-> VInteger (get_int VP_store "VP_X" - 1); VP_store)

end
with
| None => (VP_store, true)
| Some s => (s, VP_poison)
end.

Figure 3: VOLPIC-lifted form of factorial calculator1

Translation occurs between the FPC format’s CST and an in-
ternal simplified representation AST to reduce the amount of logic
required for code generation. This representation removes a large
amount of Pascal-specific information, including but not limited to

• loop dichotomies (for, foreach, do while, etc., all become
while);

• Function-Procedure dichotomies (procedures are func-
tions with no return value, which are disallowed in Coq);

• redundant nodes of the parse tree; and
• inline computations, which expand to full expressions.

Generation from the simplified AST to Coq source code occurs
via a recursive traversal of the AST, generating sub-terms along
the way to be assembled into a complete definition. We found this
approach preferable to using Coq’s OCaml API to directly convert
Pascal ASTs to Coq terms, since the Coq-OCaml API is a subject of
rapid churn and lacks the machinery necessary to generate terms
at will in a self-contained manner.

3.2 Verification and Notation Libraries
Lifting to native, standard-library-based Coq allows for standard
goal manipulation tactics, such as simpl, auto, and inversion,
to remain useful; however, VOLPIC also introduces a number of
custom values and relationships . To reduce the load of verifying
this code, we provide a theorem library that aims to simplify terms
utilizing common Pascal data types such as strings. Additionally,
given the verbose nature of code translated from an imperative
paradigm, we provide a vpex tactic that extracts subterms (e.g.,
loop bodies) from termination assumptions, making it easier to
write subproofs about the behavior of smaller parts of functions.
vpex excels when a complex inductive hypothesis is encountered,
as extraction prevents sensitive terms from being simplified beyond
what the induction hypothesis can apply to. Finally, we provide
a notation scope to minimize the representations of code while
interacting with terms such as assignments and loops, as seen in
Figure 3.

Definition correct f input expected :=
forall loop_limit output,
(output, false) = f input loop_limit ->
output "VP_result" = expected.

Definition Z_fact (n : Z) := Z.of_nat (fact (Z.to_nat n)).

Theorem factorial_correct : forall n,
correct factorial ("VP_X" !-> VInteger n; fresh_store)
(VInteger (Z_fact n)).

Figure 4: Correctness specification

3.3 Extraction Library
VOLPIC utilizes Coq’s verified extraction facilities to convert lifted
Pascal code from Coq into OCaml. In order to support FPC’s stan-
dard features, we provide a small extraction library that aims to
replicate common I/O and fundamental data structure manipulation
functions.

3.4 Lifter Correctness
A significant consideration is whether the lifter and extractor main-
tain semantic equivalence between the original Pascal program, the
intermediate Coq program, and the output OCaml program. Some
forms of equivalence are intentionally not maintained between
the three languages, including boundless looping, recursion, and
runtime errors.

To model Pascal runtime errors, we pass along poison values,
representing whether a runtime error has been encountered. When
a function’s poison value is true, evaluation immediately stops
and the function returns early, indicating the error. Poison values
provide a built-in precondition for correctness proofs that the code
has evaluated without errors by requiring the value to be false.

In Coq, loops are purely recursive and require a termination
condition provable by structural reduction. To accommodate this,
we employ a standard approach: transform loops into anonymous
recursive functions, and affix each recursive definition with a ter-
mination counter that decreases with each iteration. If the loop
counter reaches zero, the loop terminates and the poison value is
set to true.

This approach does not limit the scope of proofs we can write
about lifted code, as we can universally quantify over all values of
the loop counter to effectively remove it from consideration. This
loop counter can then be manually removed from the extracted
OCaml code; however we reserve this for future work.

As a proof of concept, we have proved the correctness of the
iterative factorial calculator shown in Figure 3, lifted from the
code shown in Figure 2. This code is then extracted from Coq
into OCaml, providing a verified, high-level representation of the
original program.

4 RESULTS AND CONTRIBUTIONS
VOLPIC is an effective solution for lifting and extracting Pascal
source code into native, verifiable, and extractable Coq code. These
approaches can be used to verify mission-critical code that pre-
viously would have relied on standard software testing or lower-
assurance proof checkers. We show that the lifted form is verifiable
with a machine-checked proof of correctness for an iterative facto-
rial calculation function, using VOLPIC’s verification libraries.

1Figure 3 has been simplified for brevity - redundant checks generated by the lifter
such as if false then e1 else e2 have been replaced with e2. These redundancies
are trivially simplified with the simpl tactic, and therefore the changes do not impact
the correctness of the function.



VOLPIC: Verifying Lifted Pascal in Coq

REFERENCES
[1] Guillaume Claret. 2014. Coq of ocaml. https://watch.ocaml.org/w/

xb34CNYKTwC51ahyaYLQuN
[2] C. A. Hoare. 1978. An axiomatic basis for computer programming. Programming

Methodology (1978), 89–100. https://doi.org/10.1007/978-1-4612-6315-9_9
[3] David C. Luckham, Steven M. German, Friedrich W. von Henke, Richard A. Karp,

P. W. Milne, Derek C. Oppen, Wolfgang Polak, and William L. Scherlis. 1979.
Stanford Pascal Verifier user manual. Technical Report. https://apps.dtic.mil/sti/
tr/pdf/ADA071900.pdf

[4] John Nagle. 1982. Pascal-F Verifier User’s Manual. http://www.animats.com/
papers/verifier/verifiermanual.pdf

[5] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco
Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach,
and Brent Yorgey. 2024. Programming Language Foundations. Software Foun-
dations, Vol. 2. Electronic textbook. http://softwarefoundations.cis.upenn.edu
Version 6.5.

[6] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and Stephanie
Weirich. 2018. Total Haskell is reasonable coq. Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs (Jan 2018).
https://doi.org/10.1145/3167092

[7] William Jr. Ward. 1994. Transition to Ada. US Army Corps of Engineers, Chapter
A: DoD Directive 3405.1, A9. https://apps.dtic.mil/sti/tr/pdf/ADA286419.pdf

https://watch.ocaml.org/w/xb34CNYKTwC51ahyaYLQuN
https://watch.ocaml.org/w/xb34CNYKTwC51ahyaYLQuN
https://doi.org/10.1007/978-1-4612-6315-9_9
https://apps.dtic.mil/sti/tr/pdf/ADA071900.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA071900.pdf
http://www.animats.com/papers/verifier/verifiermanual.pdf
http://www.animats.com/papers/verifier/verifiermanual.pdf
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1145/3167092
https://apps.dtic.mil/sti/tr/pdf/ADA286419.pdf

	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	3.1 Lifter
	3.2 Verification and Notation Libraries
	3.3 Extraction Library
	3.4 Lifter Correctness

	4 Results and Contributions
	References

