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Motivation

Lots of legacy mission‐critical code is written in Pascal
Pascal is one of 10 higher‐order languages allowed by US DoD for
mission‐critical software development [5]
Formal verification of this code is currently not possible without significant
code refactoring

Developing a framework for formally verifying Pascal code without significant
refactoring will encourage developers of mission‐critical systems to enhance the
security of their projects, improving the overall safety of these systems.

Background

Coq is a formal verification platform comprised of a functional programming
language and a machine‐checked proof environment
Code in other languages can be formally verified by transpiling [1, 4] it to
Coq or by encoding language semantics in Coq
Transpiling is easier when source and target languages are similar (e.g.
OCaml/Haskell to Coq) but difficult when they are different (e.g. an
imperative language to Coq)
Transpiled Coq code can be extracted to equivalent OCaml or Haskell code
for real‐world usage via Coq’s verified extraction facilities
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Figure 1. Transpilation pipelines

Semantics encoding is more convenient for imperative languages, but
requires more machinery and verification guarantee is indirect
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Figure 2. Encoded semantics pipeline

Previous attempts at verifying Pascal code exist [2, 3], but they do not allow
for retroactive verification and do not use modern proof checkers

Lifting, Verification, and Extraction Pipeline

VOLPIC (Verifier Of Lifted Pascal In Coq) aims to provide a seamless pipeline
for lifting, verification, and extraction of Pascal code, and is composed of three
components corresponding to these tasks.

Lifter uses a standard parse‐translate‐generate compiler architecture to
transpile Pascal code into loosely‐equivalent native Coq code
Verification library provides theorems and tactics for working with the
constructs that frequently appear in lifted code
Extraction facilities tune Coq’s code extractor to generate equivalent OCaml
code, allowing for legacy code to be automatically converted to a modern,
high‐level development language
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Figure 3. VOLPIC Pipeline

VOLPIC is able to lift code at multiple levels of optimization supported by the
Free Pascal Compiler (FPC) because its lifter utilizes FPC to generate a parsed
form of the input program.

To ensure a stable lifting interface, we provide a fork of FPC that extends the
parse tree output with important program information, such as string constants,
field names for struct accesses, and function input parameter names.

Because VOLPIC lifts into native Coq code, the existing standard library of
theorems and tactics remains useful for proving properties of lifted code.
Additionally, we provide a number of theorems and tactics that help with
manipulation of intermediate terms and defining loop invariants.

We intentionally do not maintain some forms of semantic equivalence between
the original Pascal, lifted Coq, and extracted OCaml programs. These intentional
differences involve modeling runtime errors (such as out‐of‐bounds data
structure accesses), ensuring termination conditions for loops in Coq, and
allowing for the access of generically‐typed terms by providing type‐equivalence
proofs. Although some of the differences do change the functionality of the
original code at a high level, correctness specifications can effectively remove
these differences from consideration.

Proof of Correctness Example

We provide an example of the utility of VOLPIC with a proof of correctness
for an implementation of an iterative factorial calculator. In its lifted form, the
structure of the original loop is still visible thanks to VOLPIC’s notation library.

Because this structure persists through lifting, our proof of correctness must rely
on an appropriate loop invariant, as is common for proofs of imperative code.
Our loop invariant is a direct generalization of the goal statement, where result
represents the intermediate result value:

goal: factorial(n) = Z_fact(n)
invariant: result′ = result ∗ Z_fact(n) ∧ n′ = n− 1

Figure 4. Goal and invariant for factorial correctness

function factorial(n : integer) : integer;
begin

result := 1;
while 1 <= n do
begin

result := result * n;
n := n - 1;

end;
end;

Figure 5. Iterative factorial
calculator written in Pascal

Definition factorial (VP_store: store) loop_limit :=
let VP_poison := false in
let (VP_store,VP_poison) :=

(("VP_result" !-> VInteger 1; VP_store),VP_poison) in
match
while (fun VP_store => 1 <=? get_int VP_store "VP_N")
with VP_store upto loop_limit begin fun VP_store =>

let VP_store := ("VP_result" !-> VInteger (get_int
VP_store "VP_result" * get_int VP_store "VP_N");
VP_store) in

("VP_N" !-> VInteger (get_int VP_store "VP_N" - 1);
VP_store)

end
with
| None => (VP_store, true)
| Some s => (s, VP_poison)
end.

Figure 6. VOLPIC‐lifted form of factorial
calculator

Definition correct f input expected :=
forall loop_limit output,

(output, false) = f input loop_limit -> output "VP_result" = expected.

Definition Z_fact (n : Z) := Z.of_nat (fact (Z.to_nat n)).

Theorem factorial_correct : forall n,
correct factorial ("VP_X" !-> VInteger n; fresh_store) (VInteger (Z_fact n)).

Figure 7. Correctness specification

Reflection and FutureWork

VOLPIC provides developers with the tools necessary to retroactively formally
verify the security of Pascal programs. We are currently extending the
capabilities of the lifter to support generically‐typed terms, which will allow the
lifting of arbitrary data structures and user‐defined structures. Following these
implementations, we aim to prove the utility of VOLPIC by formally verifying a
mission‐critical piece of Pascal software.
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