
Decompilation, Shmecompilation
An Introduction to Matching and Non-matching Decompilation

Practices

Charles Averill

Computer Security Group
The University of Texas at Dallas

October 19, 2022

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022



What is Decomp?

A subset of Reverse Engineering (reversing)
Reversing generally deals with understanding the operation and
structure of binaries (machine code)
Decomp goes a step further and aims to reconstruct a set of source
files that replicate the behavior of the binary when re-compiled
Matching decompilation goes another step further and aims to
reconstruct source files such that when they are compiled the binary
is identical to the original binary

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022



ARM Recap

Decompilation relies heavily on a good understanding of assembly
code, such as x86, ARM, or MIPS
Assembly instructions work by moving chunks of data around on the
CPU between storage containers called registers
int r3 = r1 + r2;

add r3, r1, r2
int r0 = 5; while(r0 != 0) { /*do something*/ }

mov r0, #0x5
my_loop_label:
// do something
sub r0, r0, -1
cmp r0, 0
bne my_loop_label

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022



Let’s Try It Out

https://decomp.me/scratch/dojn4
Utilizes function calling, multiple integer widths, pointers, conditions,
return statements
More ARM stuff

push { argument+ } - Instruction to push arguments onto stack
memory
lr - ”Link Register”, holds return program counter (current step in
program)
lsl - ”Logical shift left”
ldr - ”Load”, loads a value given an adress and a byte offset
bl - ”Branch and Link”, sets lr to the adress of the next instruction,
and branches to a label

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022

https://decomp.me/scratch/dojn4


Solution

extern u8 gUnknown_09AF3790[];

extern void* sub_0800289C(u8*, s32);

#define NULL 0

u8* sub_08039B24(u16 param_1) {
u16* t1 = (u16*)sub_0800289C(gUnknown_09AF3790, 0x24);
if (t1) {

u8* t2 = (u8*)sub_0800289C(gUnknown_09AF3790, 0x25);
return t2 + t1[param_1];

} else {
return 0;

}
}

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022



So What?

The previous code snippet was from the Game Boy Advance game
”Mother 3”, I picked this example because it was easy
You can decompile better games (and other things), like Zelda
(https://github.com/CharlesAverill/oot_le)
The goal behind decompilation projects is threefold: modding
(straightforward), preservation (straightforward), and understanding
the development of the binary (not straightforward)
Understanding the structure of the binary well enough to perform a
matching decompilation of it gives you insight into the growth of the
codebase over time
If the binary was developed by an organization, decompilation almost
always gives insight into how other binaries distributed by the
organization are built

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022

https://github.com/CharlesAverill/oot_le


So What?

Is decomp a red team or blue team activity? Sort of both!
Red team decomp looks like trying to figure out how a program works
to see if you can break it or similar software
Blue team decomp looks like reassembling viruses or other malicious
payloads to determine what vulnerabilities they target so that
defensive patches can be written

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022



That was the Easy Part!

Non-matching decompilation can be heavily automated for the most
part with software like IDA and Ghidra
That’s all good and well, but how useful is this? Not very!
Ocarina of Time Player Controller Code

Documentation takes longer than decompilation for large projects
If you don’t know what an individual function or even an individual
variable is for, it’s very hard to analyze large program structures
OOT decomp (matching) took almost 2 years to hand-decompile
(finished in Novemeber 2021). Documentation was taking place
during decompilation, now it’s just documentation. Game will likely
not be fully documented for a few years, even with more attention
now

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022

https://github.com/zeldaret/oot/blob/ab05eb97762b18e4db5569c3c8714359f187432b/src/overlays/actors/ovl_player_actor/z_player.c


Documentation

Some aspects of compilers and certain program features make parts
of documentation easier
Filenames can be embedded in user-defined asserts/errors
OOT Player Code

OOT decomp pulled the entire project directory structure using data
embedded in the binary by IDO, Nintendo’s in-house C Compiler from
the 1990s

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022

https://github.com/zeldaret/oot/blob/ab05eb97762b18e4db5569c3c8714359f187432b/src/overlays/actors/ovl_player_actor/z_player.c#L4593


Legal Issues

Nintendo probably doesn’t like that we can rebuild their games and
modify them as we please and port them to modern platforms easily
Decomp is in a weird gray area. You sold me the binary, I
disassembled it, why shouldn’t I be able to look at the assembly? If I
can look at the assembly, why shouldn’t I be able to write C code
that compiles to something similar/identical? I wrote the code!
Then again, the binary includes non-code assets, like 3D models,
textures, and music that are very clearly Nintendo’s IP
Answer? Decomp projects make you supply a ROM file to extract
assets from, and they only distribute decompiled code.
Does this solve any legal issues? Not really, but it has kept the
Nintendo ninjas away for now

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022



Controversies

Sometimes, original source code gets leaked (see the Gigaleak:
https://en.wikipedia.org/wiki/Nintendo_data_leak)
This includes the code Nintendo wrote, so it should very clearly be
off-limits
Suprise, some people disagree! Major breaches of this policy have
been encountered, where people secretly reference gigaleak code when
decompiling / documenting games
Poses a huge issue when discovered: do we uproot the git tree and
revert thousands of hours of progress, because we built on top of leak
data for months? Do we just modify the current branch and tell
people not to look in the history? Do nothing and allow leaks? Each
option has huge cons, and nobody agrees on what to do about it

Charles Averill (UTD) Decompilation, Shmecompilation October 19, 2022

https://en.wikipedia.org/wiki/Nintendo_data_leak

