
Prerequisites
Lecture #00

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Prerequisites 1/20



Topics

”Experience in an imperative programming language (C, C++,
Java, Python, etc.). The course will be taught in Python, so
familiarity is encouraged. However, confidence in another language
will suffice, as no specific python features will be important”

”Knowledge of basic programming in any assembly language”

”Knowledge of trees, linked lists, basic hash tables, basic
recursive tree traversal”

”Knowledge of basic Unix, Bash usage. Provided course materials
assume that the compiler will be built and run on a Linux target, so
usage of the cs1.utdallas.edu server or a physical Linux machine
is required, unless students choose to not use the project base”

”Knowledge of git”

Charles Averill (UTD) Prerequisites 2/20



Imperative Programming

I cannot give a succinct tutorial on how to learn imperative programming,
this knowledge is assumed. However, knowledge of any imperative
programming language that supports the following language features is
sufficient to write the code necessary to complete this course.

Conditionals

Loops

Functions

Simple classes

If following along with the ECCO compiler project base, familiarity of the C
programming language is encouraged. C is fairly simple, the only features I
would consider ”esoteric” in comparison to more modern languages are
pointers and macros. Any online tutorial will suffice to learn about
these.

Charles Averill (UTD) Prerequisites 3/20



Some Python Syntax
# Conditional statement , logical operators
if cond1 and cond2 or cond3 and not cond4:

pass

# Loops (both print out 0-9 with newlines
for i in range(10):

print(i)

x = 0
while x < 10:

print(x)
x += 1

Charles Averill (UTD) Prerequisites 4/20



Some Python Syntax
# Functions , list/tuple accesses , type hinting
def dot_prod(u: tuple[int, int], v: tuple[int, int]):

return (u[0] * v[0]) + (u[1] * v[1])

# Prints 11
print(

dot_prod((1, 2), (3, 4))
)

Charles Averill (UTD) Prerequisites 5/20



Some Python Syntax
# Class definition
Class Dog:

# Constructor
def __init__(self, name, breed, age):

self.name = name
self.breed = breed
self.age = age

# Class methods
def speak(self):

# Format string
print(f"Bark! I'm {self.name}!")

beth = Dog("Beth", "Golden Doberman", 3)
beth.speak() # Prints "Bark! I'm Beth!"

Charles Averill (UTD) Prerequisites 6/20



Assembly Programming

ECCO will compile C to LLVM-IR, a pseudo-assembly language that is
optimized by the clang compiler. It is very different from common
assembly languages like x86, ARM, or MIPS, but is grounded in similar
concepts:

Registers

Instructions

Jumps

Stack Memory

Charles Averill (UTD) Prerequisites 7/20



Assembly Programming - Registers

Registers are tiny (less than 100 bits) spaces on CPUs that store data for
the CPU to operate on. This is just enough space to store a character or a
pretty large number.

Some registers are general-purpose, so can be used for arbitrary
computation of whatever a programmer or compiler wants to accomplish.
Some registers are specific purpose, i.e. the MIPS $zero: a read-only
register that always contains the number 0, program counter registers that
contain the current instruction offset of a program, or stack pointer
registers that keep track of memory stuff.

Charles Averill (UTD) Prerequisites 8/20



Assembly Programming - Instructions

High-level languages have keywords that have special meanings, like for,
def, and, etc. Assembly languages use mnemonics or acronyms to denote
a small operation on data - usually there are no high-level structures at an
assembly languages, concepts like classes and functions are just
abstractions. Consider subu for ”Subtract (Unsigned)” or bne for ”Branch
if Not Equal” in MIPS.

Instructions typically take registers and/or constant values as input and
output arguments. For example, ADD r2,r1,r3 in ARM translates to
”add the contents of registers 1 and 3, then stores the sum into register 2.
In MIPS, addi $t2,$t1,64 adds the value 64 to the contents of
temporary register 1, then stores the result in temporary register 2.

Charles Averill (UTD) Prerequisites 9/20



Assembly Programming - Jumps

In high-level programming, we are very familiar with structures like loops
and if-else statements. These are abstractions that can be reduced to
conditional ”jumps” or ”branches”. The following code samples in Python
and MIPS are equivalent:
if x > 100:

x = 0
else:

x = 50

# t0 = x, t1 = 100
ble $t0, $t1, false_clause

true_clause:
li $t0, 0 # x = 0
j end_clause # skip false clause

false_clause:
li $t0, 50 # x = 50

end_clause:

Charles Averill (UTD) Prerequisites 10/20



Assembly Programming - Jumps cont.

Jumps are also how loops work. The following two Python loops are
structurally equivalent to the following MIPS sample (for loops are a
special case of while loops!):

            
x = 0
for i in range(10):

x = i

x, i = 0, 0
while i < 10:

x = i
i += 1

    

            
# t0 = x, t1 = i, t2 = 10

li $t0, 0
li $t1, 0

loop_head:
move $t0, $t1
addi $t1, 1
blt $t1, $t2, loop_head

    

Charles Averill (UTD) Prerequisites 11/20



Assembly Programming - Stack Memory

CPUs usually have a register called a ”stack pointer”, which points to the
expanding end of stack memory in RAM. Whenever we have data that is
too big to fit in a register, it ends up on the stack.

In a high level language, when functions are called inside of each other,
the current register contents are typically pushed onto stack memory so
that the newly-called function can use the registers without worrying
about overwriting important data. When the child function terminates,
the parent function will ”pop” the data back from the stack into the
appropriate registers.

In this way, we can have a very large amount of functions call each other,
at least until stack memory runs out.

Charles Averill (UTD) Prerequisites 12/20



Data Structures - Linked Lists

A Linked List is a (usually) bidirectional network in which each node has
exactly 0 or 1 child nodes (successors) and exactly 0 or 1 parent nodes
(ancestors).

Charles Averill (UTD) Prerequisites 13/20



Data Structures - Trees

A Tree is an oriented, (usually) bidirectional, hierarchical network of parent
and child nodes. This means that there exist a set of nodes, some who are
parents of multiple other nodes. A node can only be the child of one
parent. This image is of a ”ternary” tree (each node can have up to 3
children).

Charles Averill (UTD) Prerequisites 14/20



Data Structures - Tree Traversal

”Traversal” of a tree describes a set of algorithms that move around the
tree network and perform operations using the data stored at each node
and the relations between nodes. For our cases, traversal algorithms will
visit every node in the tree.

The two primary tree traversals are Breadth-First Traversal (BFS) and
Depth-First Traversal (DFS).

DFS of the below image: 10 85 31 15 40 30 63 1 15 7

BFS of the below image: 10 85 30 7 31 15 40 63 1 15

Charles Averill (UTD) Prerequisites 15/20



Data Structures - Hash Tables

A Hash Table is a key-value-type structure in which keys are passed
through a ”hash function”, a one-way encryption scheme that takes in
various kinds of data and outputs an integer that represents the row index
of corresponding data (values) in the table. Values can be any kind of
data, including a Linked List (we will utilize this tactic later).

Charles Averill (UTD) Prerequisites 16/20



Unix and Bash usage

You should know the very basics of Unix usage, such as how to run Bash
scripts. Our ECCO project base has a ”scripts” file, which takes arguments
to perform different actions. For example, ./scripts run test_file
will start up our compiler and pass in a file called ”test_file” to it, then
execute the generated assembly code.

./scripts all test_file will format and lint your compiler source
code, and then compile and execute test_file.

If you do not have access to a Unix-based machine (you do if you’re a
UTD student!), I expect that you understand Docker well enough to use
the provided Dockerfile in a Windows environment to run your code. Or, I
expect that you can set up WSL and use it accordingly.

Charles Averill (UTD) Prerequisites 17/20



Git usage

If this will be your first time using Git, I am excited to welcome you into
the next phase of your career as a software developer. Git is arguably the
most impactful software development tool since the first text editor was
designed.

Git is a versioning system, allowing you to track changes in your source
code over time. This is helpful if you need to make a mistake and revert to
a version of your code that works, or to see where bugs were introduced in
the past.

Charles Averill (UTD) Prerequisites 18/20



Git usage cont.

Your ”working directory” consists of the compiler source code and
whatever other files are adjacent to it. Any changes performed in the
working directory are temporary and can be reverted after a warning.

The ”staging area” is where you temporarily put your changes when you’re
almost ready to cement them. This is accomplished by running the
command ’git add [list of filenames you want to add to
staging area, separated by spaces]’.

When you’re ready to cement your changes, you can run ’git commit -m
"[descriptive message of your major changes]"’. These will add
your changes to the ”committed files” area of the repository. Commits can
be altered after running git commit but it’s non-trivial, so you can treat
this as a permanent action for many intents and purposes.

Charles Averill (UTD) Prerequisites 19/20



Remote Git usage

Sometimes you want to back up your git repository to an external server,
maybe to be safe, or to collaborate with others. In those cases, you can
use a service like GitHub or Gitlab. These websites let you remotely host
git repositories.

If there are changes on your local repository that you want to add to the
remote repository, you can run ’git push origin main’. Here, ”origin”
is the standard and default pseudonym for any remote server that hosts git
instances. Also, ”main” is the name of a ”branch”.

Git lets you split your development across multiple versions of your code
(branches) at the same time. These branches can be merged together such
that multiple people can work on disjoint parts of the software in tandem
and then combine their work with a deterministic way to resolve any
conflicting changes they might have made. You likely won’t need to
work on multiple branches for this course.

Charles Averill (UTD) Prerequisites 20/20


