
LLVM Generation
Lecture #03

Charles Averill

Introduction to Compiler Design
The University of Texas at Dallas

Fall 2023

Charles Averill (UTD) LLVM Generation 1/18



Recap of Class Format

”How should I utilize the lectures to help build the compiler?” - I suggest taking
notes in the form of comments in your own codebase that highlight the ideas
behind the changes we’re making in class.
”I’m worried that my implementation might be too similar to ECCO” - I recognize
that if you’re studying the code in the lectures, your compiler will look very similar,
and the logic and structure will likely be nearly identical. This is okay! I just don’t
want you to copy and paste from the ECCO codebase. If I say something is an
”implementation detail”, I really don’t mind if you copy it straight from ECCO,
because it’s not important to the concepts of compiler design.
”I’m worried the code I write now will interfere with the code I write later, or that
I’ll have to do large refactoring” - This is a good worry to have, because I
guarantee it will happen! This is the consequence of starting out with a small
project and expanding it to support more features. We will do our best to properly
think ahead, but there will be many occasions where you might have to refactor
old code. This builds understanding of the compiler and all of its interlaced
parts.

Charles Averill (UTD) LLVM Generation 2/18



My Philosophy on Teaching

I learned compiler design by reading ACWJ on my free time, and building Purple
using its principles. This allowed me to process the information at my own speed,
and make improvements where I saw fit. I greatly enjoyed this unstructured
approach to learning. But not everybody does!

I would love it if many people took the same path I did, and I would also love it if
many people were interested in just listening to me lecture about how I built my
compilers. The reality is that the majority of people would not like either of these
approaches. This course’s structure – lecturing about the big changes to our
compiler over time and leaving the rest up to y’all – is a combo of these two
approaches.

I was speaking about my first week teaching this course with a professor of mine,
and he told me that when an instructor teaches a course for the first time, they
usually learn more than the students of the course! So far, this is absolutely true.
And I’m having a blast!

Charles Averill (UTD) LLVM Generation 3/18



The Current State of the Compiler

We can parse binary expressions and print them out with a toy interpreter
we’ve designed.

You didn’t sign up for Practical Interpreter Design. Let’s write a compiler!

Charles Averill (UTD) LLVM Generation 4/18



The Goal

Our first goal for ECCO is to compile our input files (containing binary
expressions) down to LLVM. Then, we will pass the LLVM into clang, the
LLVM compiler, which will give us a binary.

That’s not cheating, it’s what LLVM is designed for! LLVM’s strength is
that it is a ”pseudo-assembly language”, so it abstracts features of popular
CPU architectures. That way, when we compile to LLVM, the clang
compiler can take our LLVM and convert it to x86, ARM, MIPS, etc.
while handling stuff like register allocation for us! That’s so cool!

We will not learn LLVM all at once. Over the course of the semester we
will learn LLVM as the complexity of our compiler grows. However, there
are a few core tenets of the language that we’ll go over now. If you aren’t
familiar with assembly code or basic computer architecture, please watch
Lecture 0.

Charles Averill (UTD) LLVM Generation 5/18



LLVM Basics

There are no registers in LLVM. There are infinite ”virtual registers”.
When virtual registers are defined, they can only be declared with ’=’
once. After that, you can update their value with the store
instruction. Our compiler will name virtual registers with numbers
(although they could be named with letters and some punctuation).

LLVM is strongly-typed, so every instruction will force you to give it
the type of your argument. Integer types are defined with bit widths,
e.g. i1, i4, i8, i32, i64. You can actually have any bit width
here, up to 232 − 1

LLVM lets you define functions and hook into the C standard library.
This helps a lot, as we won’t have to explicitly deal with stack
memory when calling functions (although we will talk about
what’s happening when the time comes)

Charles Averill (UTD) LLVM Generation 6/18



Let’s look at some LLVM (Program Preamble)
; ModuleID = 'examples/test1'
source_filename = "examples/test1"
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-←↩

f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"

@print_int_fstring = private unnamed_addr constant
[4 x i8] c"%d\0A\00", align 1

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @main() #0 {

Comments start with ;

target datalayout and target triple are pieces of information
we give to clang to describe the target machine we want to compile
to. These describe things like the memory architecture, CPU,
and OS

Charles Averill (UTD) LLVM Generation 7/18



Let’s look at some LLVM (Program Preamble)
; ModuleID = 'examples/test1'
source_filename = "examples/test1"
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-←↩

f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"

@print_int_fstring = private unnamed_addr constant
[4 x i8] c"%d\0A\00", align 1

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @main() #0 {

The @ prefix declares a global variable. We’re using it here to define a
format string for printing integers. [4 x i8] is describing the data
type (four characters, a.k.a. a string). %d should be familiar if you’ve
written fstrings. \0A is the newline character and \00 is the
null-terminator character

Charles Averill (UTD) LLVM Generation 7/18



Let’s look at some LLVM (Program Preamble)
; ModuleID = 'examples/test1'
source_filename = "examples/test1"
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-←↩

f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"

@print_int_fstring = private unnamed_addr constant
[4 x i8] c"%d\0A\00", align 1

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @main() #0 {

Finally we define our main function. The define keyword is obvious
enough. You don’t need to worry about dso_local yet. i32 says our
function should return an integer that fits into 32 bits. #0 is a way to
apply various attributes to main that we will see later on.

Charles Averill (UTD) LLVM Generation 7/18



Let’s look at some LLVM (Program Guts)
2 + 3× 5

define dso_local i32 @main() #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i32, align 4
store i32 2, i32* %3, align 4
store i32 3, i32* %2, align 4
store i32 5, i32* %1, align 4
%4 = load i32, i32* %2, align 4
%5 = load i32, i32* %1, align 4
%6 = mul nsw i32 %4, %5
%7 = load i32, i32* %3, align 4
%8 = add nsw i32 %7, %6
call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x ←↩

i8], [4 x i8]* @print_int_fstring , i32 0, i32 0), i32 %8)
ret i32 0

}

Charles Averill (UTD) LLVM Generation 8/18



Let’s look at some LLVM (Loading Constants)
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i32, align 4
store i32 2, i32* %3
store i32 3, i32* %2
store i32 5, i32* %1
%4 = load i32, i32* %2
%5 = load i32, i32* %1

The first thing we need to do when compiling binary expressions is
allocating space for each number we want to compute. The alloca
instruction allocates space for data on the stack given a data type, and
ensures the address will be a multiple of 4 (we might talk more about
stack alignment later, but even if you get this wrong, clang can fix your
alignment errors usually). alloca returns a pointer, which we store into
registers 1, 2, 3 (local variables are denoted with %).

Charles Averill (UTD) LLVM Generation 9/18



Let’s look at some LLVM (Loading Constants)
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i32, align 4
store i32 2, i32* %3
store i32 3, i32* %2
store i32 5, i32* %1
%4 = load i32, i32* %2
%5 = load i32, i32* %1

Next, we can store values into the space we just allocated. Again, we
give it our datatype i32, then we tell the instruction that we’re storing it
into an i32 pointer that exists at a certain register.

Finally, we load the values from pointers into virtual registers. This allows
us to perform computations on the data. This seems very verbose for just
storing values, but it’s a good starting point for more complex
behavior later.

Charles Averill (UTD) LLVM Generation 9/18



Let’s look at some LLVM (Arithmetic)
%6 = mul nsw i32 %4, %5
%7 = load i32, i32* %3
%8 = add nsw i32 %7, %6

We’re now going to multiply the contents of registers 4 and 5, which
contain the values 3 and 5, respectively. The nsw keyword stands for ”no
signed wrap”. When we use this keyword, we enable some error checking
for integer overflow. If overflow occurs, the output of the mul instruction
becomes a ”poison value”. Poison values have an interesting decision; they
do not evoke errors when passed into most instructions, but indicate that
something has gone wrong. Generally, they prevent undefined behavior
from occurring. The output of mul is stored into register 6, then added to
the value loaded from register 3. The value of the binary expression is now
present in register 8.

Charles Averill (UTD) LLVM Generation 10/18



Let’s look at some LLVM (Printing)
call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 ←↩

x i8]* @print_int_fstring , i32 0, i32 0), i32 %8)
ret i32 0

We’re now going to hook into the C standard library to call printf. We
do this with the call instruction. The first two arguments, i32 (i8*,
...), provide the output and input types of the function to call. We then
provide the function’s name and its arguments, also annotated with type
signatures. Don’t worry about getelementptr inbounds, that’s just
more undefined behavior prevention.

Finally, we return 0 to indicate that our main function executed
successfully.

Charles Averill (UTD) LLVM Generation 11/18



Recap

So we’ve looked at an LLVM program. Our goal is to traverse our AST
and generate programs like this. Let’s take a look at the changes we need
to make to ECCO so that we can accomplish this.

If we take a look at ecco/ecco.py we can see that all of our interpreter
code has been replaced by a call to generate_llvm() in
ecco/generation/translate.py.

One thing to mention is that ACWJ, the project I originally based Purple
and ECCO on, compiles to x86. LLVM and x86 are fairly different in the
structure of their programs, so our code generation stage is going to be
different than ACWJ. One primary difference you would see at the end of
this lecture would be that ACWJ has to manage register usage between
x86’s r8, r9, r10, and r11 registers, while LLVM has infinite virtual
registers.

Charles Averill (UTD) LLVM Generation 12/18



LLVM Generation (ecco/generation/translate.py)

First, we have our preamble generation function, llvm_preamble(). The
preamble is mostly static for now, so this isn’t too complicated.

The next step is to allocate the stack space for all of our constants. We
could do this every time we need a new constant, but we can make it
easier to optimize if we perform a stack usage detection algorithm. Let’s
take a look at determine_binary_expression_stack_allocation().

Charles Averill (UTD) LLVM Generation 13/18



Stack Allocation

We’re going to recursively traverse our AST to determine the necessary
stack allocation statements required to store the constants in our binary
expressions.

I’ve defined a new LLVMStackEntry class in
ecco/generation/llvmstackentry.py that stores a register number
and the byte width of our numbers. We only have one kind of number
right now (i32) but this class will help later on when we add some more
number types (we will eventually add shorts, chars, ints, and longs). Our
stack allocation algorithm will return a list of LLVMStackEntries.

At each step, if the root node has any children, we will recursively call
determine_binary_expression_stack_allocation() on each child and
append their results together. Otherwise, we must be at a terminal
node (so far, these can only be i32 constants), so we’ll store its
data into an LLVMStackEntry, and return it inside of a length-1 list.

Charles Averill (UTD) LLVM Generation 14/18



Continuing our LLVM Generation

Back in generate_llvm(), we pass the output of
determine_binary_expression_stack_allocation(root) into an LLVM
generation function called llvm_stack_allocation() that traverses a list
of LLVMStackEntries and generates the LLVM alloca statements we saw
in our example program.

After this, we call ast_to_llvm(). This is the analogue to the tiny
interpreter function we wrote in the last lecture. The left_vr and
right_vr LLVMValues are going to store the virtual register numbers of
the outputs of sub-ASTs.

For example, in the AST for the expresion 2 + 3, the corresponding
left_vr and right_vr register numbers for the + node will be the register
numbers that the constants 2 and 3 were stored in.

Charles Averill (UTD) LLVM Generation 15/18



Continuing our LLVM Generation

After recursively computing the LLVM of our subtrees (or not, if the
current node is a leaf node), we’ll check whether the current node is a
binary arithmetic operator, or a terminal node representing a constant.

In the case of a binary operator, we will want to ensure that left_vr and
right_vr are loaded. Remember that when we alloca and then store a
constant into a register, we still have to load it into a new register before
we can use it. However, when we assign the output of an arithmetic
operation to a virtual register, we can assume that it is already loaded.
Let’s take a look at the llvm_ensure_registers_loaded() function.

After we know our left_vr and right_vr have loaded register values, we
can generate our arithmetic statements in llvm_binary_arithmetic(),
which abstracts the logic of checking for various operators.

In the case of a constant, we will simply store the constant into one
of our allocated registers.

Charles Averill (UTD) LLVM Generation 16/18



Finishing our LLVM Generation

Finally, we will call llvm_print_int(), which prints the contents of
a virtual register using printf and the format string we defined in
the preamble.

After we’ve generated our actual program contents, we need to generate a
postamble with llvm_postamble() that closes our main function with a
ret i32 0, hooks into C by defining a reference to printf, then defines
the attributes I mentioned a while ago.

And that’s it! We can drop arithmetic statements into our compiler now
and compile them to valid LLVM. We can compile and run this LLVM by
running clang programname.ll -o programname && ./programname
(you should add this to your scripts).

Charles Averill (UTD) LLVM Generation 17/18



Summary

This was a really complicated lecture. Likely the hardest we will have all
semester! The next hardest will be adding functions, which we’ll handle a
few lectures from now. After that, it should be smooth sailing.

Until then, please come to office hours if you have any trouble or are
feeling overwhelmed by the workload. Again, now that we have this
groundwork out of the way, it becomes much easier to expand our
compiler. Lecturing is only half of my job here, I’d like to make sure all of
you feel comfortable with, and understand well the compiler updates.

Remember that to earn the PCD certification, there are a set number of
required features your compiler must have. After implementing what we
talked about from this lecture, we are roughly 40% done with required
topics! After this, the way we introduce things will open the door for
you to choose your own syntax for many common language features.
Get excited and start dreaming up ideas!

Charles Averill (UTD) LLVM Generation 18/18


