
Conditional Statements and Loops
Lecture #07

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Conditional Statements and Loops 1/18



The Current State of the Compiler

Last week we added conditional statements to our language:

Charles Averill (UTD) Conditional Statements and Loops 2/18



The Goal

Today, we’ll be covering one of my favorite topics in this course:
conditionals and loops.

Up to now, we’ve implemented some very fundamental features that most
imperative languages should have, but we haven’t implemented any
control structures yet. This will be our first, so get excited! We will
implement if statements, while loops, and for loops.

Charles Averill (UTD) Conditional Statements and Loops 3/18



If Statements

Quick BNF Update - If Statements

statements: "{" "}"
| "{" statement "}"
| "{" statement statements "}"

statement: "print" expression ";"
| "int" IDENTIFIER ";"
| IDENTIFIER "=" expression ";"
| if_head statements
| if_head statements "else" statements
| while_head statements

if_head: "if" "(" expression ")"
while_head "while" "(" expression ")"

expression: add_expression

Charles Averill (UTD) Conditional Statements and Loops 4/18



If Statements

Quick BNF Update - If Statements

Notice that we wrap all our statements with braces. We do this to solve
the ”dangling else problem”.

The dangling else problem arises in parsing and implementations of it can
change the semantic meaning of a program. It occurs when nested ”if”s
and an ”else” lead to an ambiguous attachment of the ”else” to one of the
”if”s. To illustrate with some arbitrary language:
if (x < y):
if (a != b):

echo("Hello World!")
else:

echo("Foo Bar!")

Which ”if” does the ”else” belong to? It’s implementation-specific!
Braces solve this problem by explicitly wrapping code blocks.

Charles Averill (UTD) Conditional Statements and Loops 5/18



If Statements

If Statements: The Plan

Add tokens for ”if”, ”else”, parentheses, and braces

Add an if-statement parser (and update our generic statement parser
along the way)

Implement generators for LLVM labels and jumps

Add a testing suite to our language. We have a lot of features now,
so we should have something more versatile than manual testing

Charles Averill (UTD) Conditional Statements and Loops 6/18



If Statements

Statement Parser Updates

We’ve had to make some changes to the statement parser to support
conditional statements.

The issue is that we will have IF AST nodes that need to hold an
expression (for the condition), and potentially two statements trees, one
for the inner block of the ”if”, and one for the inner block of the ”else”.

First of all, we’re going to have to add a middle ASTNode child in the
ASTNode class.

Secondly, we’re going to go back on our statement parser optimization
that utilized Python’s generator functions to save memory. Because we’re
chaining statement blocks together in ASTs, this isn’t a feasible approach
any more, at least not until we start implementing functions.

Charles Averill (UTD) Conditional Statements and Loops 7/18



If Statements

Statement Parser Updates

Thirdly, we’re going to start ”gluing” ASTs together. Because we have
specific blocks of code that are context-sensitive, we need to glue
statements together into one big AST than can be used as the child of
more complex statements, like ”if”.

So, we’ll say we have ”root” and ”left” AST Nodes while parsing
statements. root is going to be the output of all of our individual
statement parsers, like assign_statement.

Whenever we reach a right brace (”}”), we will return our left, if it
exists. left gets built up over time, because it will glue itself to root if a
right brace is not encountered. This process allows us to chain sub-ASTs
together into one larger AST.

Finally, we write our special if-statement parser.

Charles Averill (UTD) Conditional Statements and Loops 8/18



If Statements

Code Generation - If Statements

LLVM’s branching paradigm is fairly similar to most others that you’ve
seen. There is only one branch instruction, br, that handles both
conditional and uncoditional jumps:
; Unconditional jump to label L1
br label %L1
; Conditional jump
br i1 %Condition , label %TrueLabel , label %FalseLabel

One thing to note is that LLVM does not allow for fallthroughs.
Therefore, whenever we generate a label we will often generate a jump
statement to the label first, like so:
br label %L1
L1:

Charles Averill (UTD) Conditional Statements and Loops 9/18



If Statements

Converting if-else statements to LLVM

This pseudocode and LLVM are isomorphic to each other:
if condition:

do_something_1
else:

do_something_2

; Compute condition
br i1 %condition_register , label %TRUE_LABEL , label %FALSE_LABEL
TRUE_LABEL:
... ; do_something_1
br label %END
FALSE_LABEL:
... ; do_something_2
br label %END
END:

Charles Averill (UTD) Conditional Statements and Loops 10/18



If Statements

Code Generation - If Statements

Looking at ast_to_llvm, we’ve made a few structural changes.

First, I got tired of writing [ASTNode].token.type and added a type
property.

Second, we added a parent_operation parameter to the function.
Whenever we recursively call this function, we’ll pass in our curren’t node’s
TokenType. We do this because currently, we’re enforcing that the
condition in an IF statement uses a conditional operator, so when we
generate code for those operators we need to know if we’re generating
code for a binary expression or for a conditional jump, since they behave
differently.

Let’s take a look at the code generator for if statements now.

Charles Averill (UTD) Conditional Statements and Loops 11/18



If Statements

Code Generation - If Statements

We’ve added an LLVM_LABEL_INDEX variable that keeps an eye on which
label we can generate next. We’re going to number them like the virtual
registers for easy enumeration. We’ll also use an ”L” prefix for readability.

When generating if-statement code, we:

1. Generate code to compute the condition, followed by a conditional
jump

2. Generate the ”true” code block, followed by an unconditional jump to
the ”end” label, which will also be the ”false” label if there is no else
clause

3. Generate the ”false” code block followed by an unconditional jump to
the ”end” label

Charles Averill (UTD) Conditional Statements and Loops 12/18



If Statements

Interjection

I’ve added a testing suite that uses pytest to run code for a bunch of
different test programs and make sure that their output matches the
desired output. This is a super simple setup and most popular languages
have some similar unit testing framework

Charles Averill (UTD) Conditional Statements and Loops 13/18



While Loops

While Loops: The Plan

Add ”while” token

Add a while-loop parser

Generate looping LLVM

Charles Averill (UTD) Conditional Statements and Loops 14/18



While Loops

While Loop Updates

Our while loop parser is going to be almost identical to our if-statement
parser, except that there is no ”else” clause.

Similarly, our code generator is going to be almost identical to our
if-statement generator, although the structure will be different:
br label %CONDITION_LABEL
CONDITION_LABEL:
; Compute condition
br i1 %condition_register , label %INNER_BLOCK , label %END
INNER_BLOCK:
...
br label %END
END:

Charles Averill (UTD) Conditional Statements and Loops 15/18



While Loops

While Loop Generator

1. Jump to our condition label

2. Generate our condition label

3. Generate our condition computation code followed by a conditional
branch to the end label

4. Generate our inner block code followed by an unconditional branch to
our condition label

5. Generate our end label

Charles Averill (UTD) Conditional Statements and Loops 16/18



While Loops

For Loops: The Plan

Add ”for” token

Add a for-loop parser

...

That’s it! For loops are a special case of while loops, so they’re super easy
to implement. For example, these two loops are identical:
int i;
for (i = 0; i < 10; i = i + 1) {

print i;
}

i = 0;
while (i < 10) {

print i;
i = i + 1;

}

Charles Averill (UTD) Conditional Statements and Loops 17/18



While Loops

Optional Homework

You have all you need now to implement break and continue statements.
These are a fun exercise, and it might be surprising how little code you
need to implement them.

I strongly recommend everyone be keeping up to date. I know a lot of
students are a week or two behind, that’s all fine. But if you haven’t
written any code yet, I am worried you will not complete the course. So if
you want the certification but haven’t started programming yet, I would
aim to at least have parsing done by the end of the week.

Charles Averill (UTD) Conditional Statements and Loops 18/18


	If Statements
	While Loops

