
Pointers
Lecture #10

Charles Averill

Introduction to Compiler Design
The University of Texas at Dallas

Fall 2023

Charles Averill (UTD) Pointers 1/14

The Current State of the Compiler

Previously, we added support for function calls:

Charles Averill (UTD) Pointers 2/14

Goal

We want to add support for pointers:
int main() {

int a; int b;
int c; int d;
int *e; int *f;

a = 18; print a; // 18
e = &a; b = *e; print b; // 18

c = 12; print c; // 12
f = &c; d = *f; print d; // 12

int g; int *h; int **j; int ***k;
g = 5; h = &g; j = &h; k = &j;
int n; int *m; int **l;
l = *k; m = *l; n = *m;
print n; // 5

}

Charles Averill (UTD) Pointers 3/14

Goal

This is a really cool feature. In the future it’ll let us pass more versatile
objects into functions. We’ll be able to call malloc when we support the C
standard library.

However, to accomplish this, we will have to refactor most of our number
system. This will be annoying!

Charles Averill (UTD) Pointers 4/14

Plan

1. Add ampersand token, dereference meta-token

2. Update our Number, LLVMValue types to store pointer information

3. Update type parsing to check for pointers

4. Update our expression parsing to handle unary pointer operators

5. Update our register loading code

6. Add generator functions for addressing and dereferencing variables

Charles Averill (UTD) Pointers 5/14

New Tokens

Adding an ampersand token is no problem. However, we have an issue
with our derefernce token.

Initially, I just wanted to reuse the STAR token. The ”times” operator and
dereference operator are both stars, so why not?

Charles Averill (UTD) Pointers 6/14

New Tokens

Answer: We’re building an ABSTRACT syntax tree. A concrete syntax
tree would use a STAR token for both.

Abstract syntax trees encode ideas about the program, not specific details
about the ASCII representation of the code itself.

Because of this, I’ve added a new DEREFERENCE token. We’ll see in a
bit how we use the two tokens in tandem.

Charles Averill (UTD) Pointers 7/14

Updating Number and LLVMValue

Our Number and LLVMValue classes store information about data flowing
through our program. Right now they can really just handle numbers. We
need to update them so they can recognize whether they’re storing
pointers or not.

ACWJ accomplishes this by adding types INTPTR, CHARPTR, etc. on
top of the INT and CHAR types. Why is this suboptimal?

My first approach to solving this problem included storing a
”stores_pointer” bool field to the Number and LLVMValue classes. Why is
this suboptimal?

Charles Averill (UTD) Pointers 8/14

Updating Number and LLVMValue

Solution: we store a ”pointer_depth” int field in both classes. Regular ints
and chars will have a pointer depth of 0, int pointers depth 1, int pointer
pointers depth 2, etc.

This ends up generalizing really well. We can update the pointer depth
field by addition or subtraction when we address or dereference a variable
to create our new Numbers/LLVMValues.

Charles Averill (UTD) Pointers 9/14

Type Parsing

Utilizing our new tokens and our Number updates, we can now parse
pointer variable declarations.

I’ve added a match_type function that matches either an INT or a CHAR
token, then tries to parse as many stars as possible. It then stores those
two data points into a Number object and returns it. We use this in
declaration_statement and will eventually use it in
function_declaration.

Charles Averill (UTD) Pointers 10/14

Parsing unary operators in expressions

To add an operator, normally we would just add entries to our precedence
table. However, we also have to do some static semantic checking to make
sure programmers can’t use the pointer operators illegally.

If we added standard unary operator support, you could do
int x;
int y = ***x;
int z = &&&y;

as unary operators generally operate on expressions, and are expressions
themselves.

Let’s look at prefix_operator_passthrough.

Charles Averill (UTD) Pointers 11/14

Register Loading Update

Previously, we used a list of registers to determine what data was loaded
and what wasn’t. This won’t work any longer, why not?

Charles Averill (UTD) Pointers 12/14

Register Loading Update

Previously, we used a list of registers to determine what data was loaded
and what wasn’t. This won’t work any longer, why not?

Answer: with variable-pointer-depth data, knowing whether data is loaded
or not is not explicitly dependent on the pointer depth any more, it’s
instead dependent on what an operation expects. LLVM won’t let you add
two int*s, so we know that when we add two numbers, the input
LLVMValues should be loaded such that they have a pointer depth of 0.

The solution is to add a new input to llvm_ensure_registers_loaded
that specifies the expected pointer depth of what is considered ”loaded”.

Charles Averill (UTD) Pointers 13/14

New Generator Functions

For getting the address of a variable, we can simply allocate space for a
new register on the stack, then
store <var type> @<var name>, <type with ptr depth + 1> %<new reg>.

Dereferencing is accomplished through the load instruction that we’re
already familiar with.

Charles Averill (UTD) Pointers 14/14

