
Architecture of Large Compilers
Tech Talk #02

Charles Averill and Jack Myrick

Introduction to Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 1/18



Overview

Our compiler, ECCO, is a fairly simple compiler. An accurate
description would be that it is a ”single-pass optimizing C to LLVM
compiler”

ECCO works - it translates its source language to its target language
and (hopefully) preserves semantic equivalence

ECCO-generated code is not fast by default, it’s essentially a 1:1
mapping of high-level code to low-level code

Production compilers generate very fast code. What about them is
different?

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 2/18



ECCO Overview

Scanner Parser

Source
File

LLVM
Generator

Target
File

AST Optimizer

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 3/18



C

gcc

Fun fact: what do you think GCC stands for?

We use it as a C compiler

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 4/18



C

GIMPLE

GIMPLE is one of GCC’s intermediate representations

Expressions have at most 3 operands

All control flow is turned into GOTO and conditional statements
Gets converted to SSA (same idea as LLVM-IR), is optimized, back to
GIMPLE, then into RTL

RTL is similar to LLVM-IR - also an abstraction of CPU hardware

Type system is much smaller - just integers and floats

Less debuggable than LLVM-IR

Gimple Example

RTL Example

GCC Internals Wiki Page

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 5/18

https://gcc.gnu.org/onlinedocs/gcc-4.3.6/gccint/GIMPLE-Example.html
https://www.cse.iitb.ac.in/~uday/courses/cs715-09/gcc-rtl.pdf
https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_Compiler_Architecture


C

clang

We’re implementing a simple clang!

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 6/18



Java

Java

Java is a high-level OOP language designed to write once, run
anywhere

To accomplish this, Java bytecode runs in the Java Virtual Machine
(JVM) to abstract computer architecture details away
The JVM has four registers:

1. PC: program pointer, points to a position in the program store

2. VARS: all local variables are addressed relative to this register

3. OPTOP: points to the topmost cell of the operand stack

4. FRAME: points to the first cell of the execution environment

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 7/18



Java

JVM

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 8/18



Java

javac

Java’s primary compiler is javac, and is included in the Java
Development Kit (JDK)

javac compiles Java source code into Java bytecode, which the JVM
understands when running

javac is itself written in Java and its source is available under the
GNU General Public License as part of OpenJDK

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 9/18

https://github.com/openjdk/jdk/tree/877731d2a20249ce4724a071ba2da1faa56daca4/src/jdk.compiler


Java

Compilation Overview

javac takes in .java files and outputs bytecode as .class files
Divided into three stages:

1. Parse and Enter

2. Annotation Processing

3. Analyse and Generate

javac Architecture

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 10/18

https://openjdk.org/groups/compiler/doc/compilation-overview/index.html


Java

Parse and Enter

”All the source files specified on the command line are read, parsed
into syntax trees, and then all externally visible definitions are entered
into the compiler’s symbol tables.” (OpenJDK Compilation Overview)

Source files converted into a stream of tokens by the Scanner

The Parser reads this stream to create syntax trees using a TreeMaker

Each tree is passed to Enter, which enters class and member
declarations into the symbol table

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 11/18

https://openjdk.org/groups/compiler/doc/compilation-overview/index.html


Java

Annotation Processing

”All appropriate annotation processors are called. If any annotation
processors generate any new source or class files, the compilation is
restarted, until no new files are created.” (OpenJDK Compilation
Overview)

”Annotations, a form of metadata, provide data about a program that
is not part of the program itself. Annotations have no direct effect on
the operation of the code they annotate.” (Java Annotations Tutorial)
Uses for annotations:

1. Information for the compiler

2. Compile-time and deployment-time processing

3. Runtime processing

Examples: @Override, @Deprecated, @SuppressWarnings

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 12/18

https://openjdk.org/groups/compiler/doc/compilation-overview/index.html
https://openjdk.org/groups/compiler/doc/compilation-overview/index.html
https://docs.oracle.com/javase/tutorial/java/annotations/index.html


Java

Analyse and Generate

”Finally, the syntax trees created by the parser are analyzed and
translated into class files. During the course of the analysis, references
to additional classes may be found. The compiler will check the
source and class path for these classes; if they are found on the source
path, those files will be compiled as well, although they will not be
subject to annotation processing.” (OpenJDK Compilation Overview)
The work is done by a series of visitors

Attr - top level classes are ”attributed” (names, expressions, etc.
resolved and associated with types or symbols)

Flow - flow analysis for unreachable statements and assignment

TransTypes - translates generic types to standard types

Lower - processing of syntactic sugar

Gen - generation of code for methods using bytecode
Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 13/18

https://openjdk.org/groups/compiler/doc/compilation-overview/index.html


Java

Further Reading

The Hitchhiker’s Guide to javac

The Hacker’s Guide to Javac

A Formal Introduction to the Compilation of Java

The Java Language Specification

The Java Virtual Machine Specification

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 14/18

https://openjdk.org/groups/compiler/doc/hhgtjavac/index.html
https://scg.unibe.ch/archive/projects/Erni08b.pdf
https://people.cis.ksu.edu/~hatcliff/605/XC/java-comp.pdf.gz
https://docs.oracle.com/javase/specs/jls/se20/html/index.html
https://docs.oracle.com/javase/specs/jvms/se20/html/index.html


TypeScript

TypeScript

TypeScript is a superset of JavaScript that adds optional static typing

TypeScript transpiles to JavaScript

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 15/18



TypeScript

tsc

TypeScript’s primary compiler is tsc

tsc compiles TypeScript source code into JavaScript source code,
which can be run in the browser by a JavaScript engine like V8 or in a
JavaScript runtime like Node, Deno, or Bun

tsc is itself written in TypeScript and its source is published on GitHub

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 16/18

https://github.com/microsoft/TypeScript/tree/main/src/compiler


TypeScript

Compilation Overview

I found my information through this repo. The video linked there is a
good watch.

1. Preprocessing for files to include through imports or requires

2. AST Node Generation

3. Binder binds Symbols (one for each named entity) with scopes

4. Generating a SourceFile along with its Symbols

5. Build a global view of all files in the compilation as a Program

6. TypeChecker assigns Types to Symbols along with generating semantic
Diagnostics

7. Emitter outputs as .js

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 17/18

https://github.com/microsoft/TypeScript-Compiler-Notes
https://www.youtube.com/watch?v=X8k_4tZ16qU


TypeScript

Compilation Architecture Summary

Summary of Compilation Process

Charles Averill and Jack Myrick (UTD) Architecture of Large Compilers 18/18

https://www.youtube.com/watch?v=X8k_4tZ16qU

	C
	Java
	TypeScript

