
Compiler Security
Tech Talk #03

Charles Averill

Introduction to Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Compiler Security 1/10



What is it?

No unsafe code generation
Open-source development

Preventing unsafe behavior from compiling

Prevent safe behavior from optimizing into unsafe behavior

Semantically equivalent code generation
PL Theory :)

Charles Averill (UTD) Compiler Security 2/10



Open-source compiler vulnerabilities

GCC vulns

LLVM vulns

Ken Thompson’s compiler backdoor (thought experiment)

(buffer overflow, uncontrolled recursion, RNG manipulation)

Charles Averill (UTD) Compiler Security 3/10

https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-960/GNU-GCC.html
https://www.cvedetails.com/vulnerability-list/vendor_id-13260/product_id-137468/Llvm-Llvm.html
https://wiki.c2.com/?TheKenThompsonHack


Semantics

What does this language do?

gleeble: glorp
| gloozle
| gleeble "+" gleeble
| "glonzagle" gleeble

Charles Averill (UTD) Compiler Security 4/10



Semantics

You have no idea! We need to describe, mathematically, how a
programming language works. Some groundwork:

”Store”: σ - a function from variable names to values

”Typing context”: Γ - a function from variable names to types
”Judgement”: ⟨x, σ,Γ⟩ ⇓ σ′,Γ′ - ”When the command x runs with
store σ and typing context Γ, it results in a new program state
defined by the new store σ′ and the new typing context Γ′

Judgements can have conditions: A B
⟨c, σ,Γ⟩ ⇓ σ′,Γ′

”This judgement holds if some propositions A and B hold”
Γ ⊢ 5 : int Γ′ := Γ[x := int] σ′ := σ[x := 6]

⟨int x = 5;, σ,Γ⟩ ⇓ σ′,Γ′

Charles Averill (UTD) Compiler Security 5/10



Simply-Typed Lambda Calculus Semantics

Charles Averill (UTD) Compiler Security 6/10



So What?

If we have a model of input C semantics, and we have a model of output
ASM semantics, we can mathematically determine if the input of our
compiler does the same thing as the output!

Charles Averill (UTD) Compiler Security 7/10



Sort of...

There are some issues:

C has typing contexts (sort of) and stores (yes)

Assemble does not have types (sort of) has stores but limited
variables (registers)

We’ve invented concepts like register mapping to abstract the idea of
stores to assembly code. Question: how do we map typing contexts?

Charles Averill (UTD) Compiler Security 8/10



Reality

Answer: We don’t!

Semantic equivalence states:

∀B : program behaviors,
S : source programs,
C : compiled programs,
S ⇓ B ⇐⇒ C ⇓ B.

This is way too hard to deal with. No realistic compiler ever written for a
production language to a different production language satisfies this
condition.

Charles Averill (UTD) Compiler Security 9/10



Reality

For example, C semantics do not specify the order of operations between
addition and subtraction. Therefore, C compilers choose an order. But,
that means that the C semantics allow for more program behaviors than
the output assembly semantics. So how can the condition hold (it’s
bidirectional!)?

Another example: if (5 < 3) printf("%d\n", 1 / 0);

The compiler can optimize out the unsafe division by zero because the
condition is trivially never true. So the division by zero might not throw a
compiler error. Therefore, if the source program can semantically ”go
wrong,” the compiled program can still not ”go wrong.”

Useful semantic equivalence states:
∀BSC,B not wrong =⇒

S ⇓ B ⇐⇒ C ⇓ B.

Charles Averill (UTD) Compiler Security 10/10


