Pointers
Lecture #10

Charles Averill (UTD) Pointers 1/14

The Current State of the Compiler

(base) charles@nostromo:~/Desktop/ecco$ cat examples/factorial

while (y > 0) {
X =X *y;
y -1

B

}

return x;

}

int main() {
print fred(0);

(base) charles@nostromo:~/Desktop/ecco$./scripts run examples/factorial
(base) charles@nostromo:~/Desktop/ecco$ clang factorial.ll -o factorial_5
(base) charles@nostromo:~/Desktop/ecco$./factorial_ 5

120

Charles Averill (UTD) Pointers 2/14

Goal

We want to add support for pointers:

int main() {
int a; int b;
c; int d;
*xe; int *f;

18; print a;
&a; b = xe; print b;

12; print c;
&c; d = *f; print d;

g; int xh; int **xj; int **¥x*k;
5; h = &g; j = &h; k = &j;
n; int *m; int **1;
*k; m = *x1; n = *m;
print n;

Charles Averill (UTD) Pointers

Charles Averill (UTD) Pointers 4/14

Charles Averill (UTD) Pointers 5/14

New Tokens

Charles Averill (UTD) Pointers 6/14

New Tokens

Charles Averill (UTD) Pointers 7/14

Updating Number and LLVMValue

Our Number and LLVMValue classes store information about data flowing
through our program. Right now they can really just handle numbers. We

need to update them so they can recognize whether they're storing
pointers or not.

ACWJ accomplishes this by adding types INTPTR, CHARPTR, etc. on
top of the INT and CHAR types. Why is this suboptimal?

My first approach to solving this problem included storing a

"stores__pointer” bool field to the Number and LLVMValue classes. Why is
this suboptimal?

Charles Averill (UTD) Pointers 8/14

Updating Number and LLVMValue

Solution: we store a "pointer_depth" int field in both classes. Regular ints

and chars will have a pointer depth of 0, int pointers depth 1, int pointer
pointers depth 2, etc.

This ends up generalizing really well. We can update the pointer depth
field by addition or subtraction when we address or dereference a variable
to create our new Numbers/LLVMValues.

Charles Averill (UTD) Pointers 9/14

Type Parsing

Charles Averill (UTD) Pointers 10/14

Parsing unary operators in expressions

To add an operator, normally we would just add entries to our precedence
table. However, we also have to do some static semantic checking to make
sure programmers can't use the pointer operators illegally.

If we added standard unary operator support, you could do

as unary operators generally operate on expressions, and are expressions
themselves.

Let's look at prefix_operator_passthrough.

Charles Averill (UTD) Pointers 11/14

Register Loading Update

Charles Averill (UTD) Pointers 12/14

Register Loading Update

Previously, we used a list of registers to determine what data was loaded
and what wasn't. This won't work any longer, why not?

Answer: with variable-pointer-depth data, knowing whether data is loaded
or not is not explicitly dependent on the pointer depth any more, it's
instead dependent on what an operation expects. LLVM won't let you add
two int*s, so we know that when we add two numbers, the input
LLVMValues should be loaded such that they have a pointer depth of 0.

The solution is to add a new input to 1lvm_ensure_registers_loaded
that specifies the expected pointer depth of what is considered "loaded".

Charles Averill (UTD) Pointers 13/14

New Generator Functions

Charles Averill (UTD) Pointers 14/14

