
Infinity, The Woodpecker, and the Trace that Eludes
Scalable Binary Verification via Co-Induction

Charles Averill

The University of Texas at Dallas
Dartmouth College

February 2026

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Formal Binary Verification Refresher

Testing, auditing insufficient for critical systems (see Shellshock)
Sound alternative? Machine-checked proofs of safety + correctness
Top-down approach: write code in Rocq/Lean/Agda/Idris…, extract
to OCaml/Haskell/C…, compile and run

Verified compiler (CompCert, CakeML)? What about libc?
No verified compiler? Can you trust transformations?

Bottom-up approach: lift binary program into ITP, encode ISA
semantics, proof logic, get a backwards guarantee back

I don’t care what compiler you used (if you even used one)
Handles hand-written assembly (see musl memcpy.S)

The future holds much of both approaches

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026

https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://git.musl-libc.org/cgit/musl/tree/src/string/arm/memcpy.S


We have a million a Problem

Machine code is hard: bit math, IO, ISA instruction support,
highly-optimized code, …
Our focus today: function calls
Good software is usually modular - proofs should be too!

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Duh?

Is this really a “problem?” Don’t verification environments (e.g.,
VST, Bedrock2) already support function calls? They do, for
languages in which functions and calls are first-class notions!
No first-class notion of calls in machine code, only “rich(er) gotos”
(* 4f8 => 0xcedff0ef (jal ra,1e4 <chacha20_quarter>) *)
Compute lift_riscv ChaCha20 0x4f8.
(* = Move R_RA 0x4fc $; Jmp 0x1e4 *)
Gotos and syntactic Hoare logic do not go together — now we need
a CFG-driven approach
Used by lower-level tools (e.g., Bedrock, ~ Boogie, and Picinæ!)
Verification via invariant sets, maps from labels to state properties
Example

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026

https://github.com/CharlesAverill/Picinae/blob/riscv_example_proof_caverill/Examples/riscv_addloop_proof.v#L98


Syntactic Hoare Logic

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Picinæ and Linear Temporal Logic

I help maintain Picinæ, framework for symbolic binary verification
Binaries have arbitrary jumps −→ we need a CFG-driven program logic
Naïve approach: “a program is correct if invariants are preserved by
every CFG edge”
But this precludes “xyz eventually happens” (liveness), or reasoning
about infinite loops (e.g. OS kernels, web servers)
LTL gives us the “eventually” operator, allowing for “a program is
correct if it eventually reaches a true invariant”

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Back to the Problem

Historically, Picinæ didn’t support function calls
Verifying large programs not really possible
How much re-architecting do we have to do to get modularity?
Well, what architecting happened in the first place?

   Partial Correctness
   "All invariants are satisfied for all non-terminated traces/program executions"

    Invariants
    satisfied
    for trace

Currently at true invariant

Eventually get to a true invariant

 Program Execution
"All pairs in a trace are valid steps"

Small-Step
       eval_exp

exec_stmt

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Picinæ Components

Normal small-step semantics for expressions (eval_exp) and
statements (exec_stmt)
Program execution or trace (exec_prog) ≡ a list of states where
each neighboring pair is a valid small step
The next invariant (nextinv) is satisfied (true when reached) if

Program is at a true invariant point
Program will eventually get to a true invariant point

A terminating program is correct if all invariants are satisfied for all
appropriate traces

Partial correctness (satisfies_all) is our top-level theorem, i.e., what
we want to prove about each function.

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Modularity

Goal: define separate invariant sets, different satisfies_all proofs
for caller/callee, and use callee satisfies_all result as a lemma

lower(x):
  if 'A' <= x <= 'Z':
    return x + 32
  return x

x is a letter char

return the
lowercase form

of x

strcasecmp(str1, str2):
  for c1, c2 in str1, str2:
    if lower(c1) != lower(c2):
      return False
  return True

str1, str2 are strings

return True iff strings are
case-insensitive equal

lower(c1), lower(c2) are the
lowercase forms of c1, c2

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



The Obvious(?) Approach

Binary is flat list of bytes. Naïve proof considers programs this way
with a monolithic invariant set. Any abstraction we build must be
equivalent to this approach on some level
Let’s consider the distinct invariant sets + satisfies_all approach
and try to show that it is equivalent to the naïve approach
Something weird happens! What happens if you write a caller proof
that does not include callee invariants?
If the callee contains a potentially-infinite loop, any inductive proof of
the callee must place an invariant there
Remove the invariant? The proof could never have been constructed -
contradiction!

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Huh?

This is very strange. We wrote an inductive proof of satisfies_all
for the callee
satisfies_all talks about invariants that are “true when reached…”
If we remove invariants blindly, we allow infinite loops to invalidate
our callee proof results
But this seems to imply that we could call a function and end up with
an infinite, inductively-defined trace upon returning to the call site

while(true) skipInv 1 C1; C2; ...

Condition

return Inv 2

Inv 0

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Co-Induction

Can we just adjust our formalism to allow an infinite number of steps
in callees? It never actually can happen, so it shouldn’t be unsound…
Introducing Co-Induction:

Co-Inductive proofs/data structures are infinite in size
Co-Recursive functions are non-terminating

What if we make nextinv a CoInductive rather than an Inductive?

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026

https://github.com/CharlesAverill/Picinae/blob/master/Picinae_theory.v#L5838

