Infinity, The Woodpecker, and the Trace that Eludes

Scalable Binary Verification via Co-Induction

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Formal Binary Verification Refresher

Testing, auditing insufficient for critical systems (see Shellshock)

Sound alternative? Machine-checked proofs of safety + correctness
Top-down approach: write code in Rocq/Lean/Agda/Idris..., extract
to OCaml/Haskell/C..., compile and run

Verified compiler (CompCert, CakeML)? What about libc?

No verified compiler? Can you trust transformations?
Bottom-up approach: lift binary program into ITP, encode ISA
semantics, proof logic, get a backwards guarantee back

| don't care what compiler you used (if you even used one)

Handles hand-written assembly (see musl memcpy.S)

The future holds much of both approaches

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026


https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://git.musl-libc.org/cgit/musl/tree/src/string/arm/memcpy.S

We have a-millien a Problem

Machine code is hard: bit math, 10, ISA instruction support,
highly-optimized code, ..

Our focus today: function calls
Good software is usually modular - proofs should be too!

i methodC
; methodB

' methodA
| main

Method Call Stack
(Last-in-First-out Queue)

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



(x 4£f8 => OxcedffOef (jal ra,le4 <chacha20_quarter>) *)
Compute 1lift_riscv ChaCha20 0x4£f8.
(x = Move R_RA Ox4fc $; Jmp Oxled *)

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026


https://github.com/CharlesAverill/Picinae/blob/riscv_example_proof_caverill/Examples/riscv_addloop_proof.v#L98

Syntactic Hoare Logic

{P} c {a} P> —> P

{p’} < {a}
{p A (b)) c1 {Q} 1P A =)} c2 {a}

{P} skiP {P}

{P A ((b))} IF b THEN c; ELSE c; {Q}
{p A B} c {P} P — ((b)) {P} <1 {af} {alt <2 {r}

P} WHILE b DO c

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Picinae and Linear Temporal Logic

| help maintain Picinae, framework for symbolic binary verification
Binaries have arbitrary jumps — we need a CFG-driven program logic
Naive approach: “a program is correct if invariants are preserved by
every CFG edge”

But this precludes “xyz eventually happens” (liveness), or reasoning
about infinite loops (e.g. OS kernels, web servers)

LTL gives us the “eventually” operator, allowing for “a program is
correct if it eventually reaches a true invariant”

-
¢ | Timelme ]
7

/
/ L, PICINAE

‘\

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Back to the Problem

Historically, Picinae didn’t support function calls
Verifying large programs not really possible
How much re-architecting do we have to do to get modularity?

Well, what architecting happened in the first place?

Partial Correctness
"All invariants are satisfied for all non-terminated traces/program executions"

Program Execution
"All pairs in a trace are valid steps"
Invariants Currently at true invariant
satisfied Small-Step
for trace Eventually get to a true invariant eval exp
exec_stmt

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Picinee Components

Normal small-step semantics for expressions (eval_exp) and
statements (exec_stmt)

Program execution or trace (exec_prog) = a list of states where
each neighboring pair is a valid small step

The next invariant (nextinv) is satisfied (true when reached) if

Program is at a true invariant point
Program will eventually get to a true invariant point

A terminating program is correct if all invariants are satisfied for all
appropriate traces
Partial correctness (satisfies_all) is our top-level theorem, i.e., what
we want to prove about each function.

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Modularity

Goal: define separate invariant sets, different satisfies_all proofs
for caller/callee, and use callee satisfies_all result as a lemma

'A' <= x <= "Z':
return x + 32
return x

return the
lowercase form
of x

. str1, str2 are strings .

strcasecmp (strl, str2):
for cl, c2 in strl, str2:
if lower (cl) != lower (c2): lower(c1), lower(c2) are the
return False lowercase forms of c1, c2

return True

return True iff
case-insensitive e

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



The Obvious(?) Approach

Binary is flat list of bytes. Naive proof considers programs this way
with a monolithic invariant set. Any abstraction we build must be
equivalent to this approach on some level

Let's consider the distinct invariant sets + satisfies_all approach
and try to show that it is equivalent to the naive approach

Something weird happens! What happens if you write a caller proof
that does not include callee invariants?

If the callee contains a potentially-infinite loop, any inductive proof of
the callee must place an invariant there

Remove the invariant? The proof could never have been constructed -
contradiction!

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026



Huh?

This is very strange. We wrote an inductive proof of satisfies_all
for the callee

satisfies_all talks about invariants that are “true when reached...”
If we remove invariants blindly, we allow infinite loops to invalidate
our callee proof results

But this seems to imply that we could call a function and end up with
an infinite, inductively-defined trace upon returning to the call site

S

@ while(true) skip c1;C2; ...
o

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction February 2026




Co-Induction

Charles Averill (UTD, Dartmouth) Scalable Binary Verification via Co-Induction


https://github.com/CharlesAverill/Picinae/blob/master/Picinae_theory.v#L5838

