Secrets of the Universe
The Ultimate Formal Verification Talk

Charles Averill (UTD) Secrets of the Universe Fall 2023

Table of Contents

Charles Averill (UTD) Secrets of the Universe Fall 2023

Who am I?

Charles Averill (UTD) Secrets of the Universe Fall 2023

https://seashell.charles.systems/teaching/ICD

The Philosophy of Uncertainty

“The only true wisdom is in knowing you know nothing.” - Socrates

The Philosophy of Uncertainty

What do we know?

Charles Averill (UTD) Secrets of the Universe Fall 2023

The Philosophy of Uncertainty

Uncertainty

We really can't know anything for certain

Our bodies are designed to observe stimuli and respond to them in
order to maximize survival rate, any kind of intelligence that
developed after that was a side effect

As a result, we fall into certainty traps all of the time, these are large
reasons why

Database breaches
Physical infrastructure failures
Under-performing public policy

occur

We have checks to mitigate failures like these, but they clearly
are not 100% effective!

Charles Averill (UTD) Secrets of the Universe Fall 2023

Certainty in Security

“HIC MANEBIMVS OPTIME" - Marcus Furius Camillus

Certainty in Security

Hope

We have established that we live in a low-certainty world
This is not the end: enter High-Assurance Computing

“Let's make rigorous, mathematically-defined checkable models of
computing so we can verify that we made the software correctly”

Pros | Cons
Enhanced security Expensive
High reliability Takes a long time
Less maintenance | Significantly more difficult
High trustworthiness Hard to scale

< /N

@] DARPA

Charles Averill (UTD) Secrets of the Universe Fall 2023

—

Certainty in Security

Case Study

Many examples of “dumb” software bugs
with huge impacts

Heartbleed (2014): Buffer overflow in
assumed benign code allows for huge
information leakage

Shellshock (2014): Unjustified trust in
environment variables allows for RCE on
the majority of online systems
Spectre/Meltdown (2018): Unjustified trust
in information-concealing properties of
speculative execution allows for huge
information leakage

BlueBorne (2017): Let's find out!

Charles Averill (UTD) Secrets of the Universe Fall 2023

Certainty in Security

BlueBorne

Collection of 8 cross-platform vulnerabilities in the Bluetooth stack

One of the Linux vulnerabilities - This one allows for RCE

static int 12cap_parse_conf_rsp(struct 12cap_chan *chan, void *Fsp, int len,
void *data, u16 *result)

{

struct 12cap_conf_req +F&q - data;
void PR - Feq->data;
o
while (len >= L2CAP_CONF_OPT_SIZE) {
len -= 12cap_get_conf_opt(&Fsp, &type, &olen, &val);

switch (type) {

case L2CAP_CONF_MTU:
// Validate MTU...
12cap_add_conf_opt (&P%E, L2CAP_CONF_MTU, 2, chan->imtu);
break;

case L2CAP_CONF_FLUSH_TO:
chan->flush_to = val;
12cap_add_conf_opt (&FEE, L2CAP_CONF_FLUSH_TO,
2, chan->flush_to);
break;

¥
...
return ptr - data;

Excerpt from (2cap_parse_conf_rsp (netbluetooth/i2cap_core.c)

Charles Averill (UTD) Secrets of the Universe Fall 2023

https://github.com/torvalds/linux/blob/dcf4adbfdc7ad14ca50c1133f93f998c78493c2d/net/bluetooth/l2cap_core.c#L3507

Certainty in Security

BlueBorne

rsp is an attacker-controlled buffer, 12cap_parse_conf_rsp intends to
parse rsp, validate it, and copy it into data. Do you see the issue?

static int l2cap_parse_conf_rsp(struct 12cap_chan *chan, void «rsp, int len,
void #data, u16 *result)

{

struct 12cap_conf_req *req = data;
void P - Feq->data;

o
while (len >= L2CAP_CONF_OPT_SIZE) {
len -= 12cap_get_conf_opt(&rsp, &type, &olen, &val);

switch (type) {
case L2CAP_CONF_MTU:
// Validate MTU...
IZCap,add,conf,opt(&-, L2CAP_CONF_MTU, 2, chan->imtu);

break;

case L2CAP_CONF_FLUSH_TO:
chan->flush_to = val;
12cap_add_conf_opt (&8%H, L2CAP_CONF_FLUSH_TO,
2, chan->flush_to);
break;

...
return ptr - data;

Excerpt from [2cap_parse._conf_rsp (net/bluetooth/I2cap_core.c)

Charles Averill (UTD) Secrets of the Universe Fall 2023

Certainty in Security

BlueBorne

The size of the data buffer isn't taken into account! A payload can be
crafted in rsp that overflows data and writes arbitrary data into memory.

static int l2cap_parse_conf_rsp(struct 12cap_chan *chan, void «rsp, int len,
void #data, u16 *result)

{

struct 12cap_conf_req *req = data;
void P - Feq->data;
o
while (len >= L2CAP_CONF_OPT_SIZE) {
len -= 12cap_get_conf_opt(&Fsp, &type, &olen, &val);

switch (type) {

case L2CAP_CONF_MTU:
// Validate MTU...
IZCap,add,conf,opt(&-, L2CAP_CONF_MTU, 2, chan->imtu);
break;

case L2CAP_CONF_FLUSH_TO:
chan->flush_to = val;
12cap_add_conf_opt (&8%H, L2CAP_CONF_FLUSH_TO,
2, chan->flush_to);
break;

...
return ptr - data;

Excerpt from [2cap_parse._conf_rsp (net/bluetooth/I2cap_core.c)

Charles Averill (UTD) Secrets of the Universe Fall 2023

Certainty in Security

BlueBorne

Can usually be triggered without any user interaction due to some
exfiltration techniques overlooked by the Bluetooth specification

Most BT devices are always listening for traffic directed to them, and
only a hardware address is needed to initiate connection

5.3b devices at risk at time of discovery, 2b after 1 year

Hardware address supposed to be difficult to find, but actually fairly
easy if you can sniff BT packets due to plenty of un-encrypted header
data

Stack overflows like this one usually mitigated by stack protection
techniques - many Linux devices don't use these by default

If standard mitigations don’t work, what does?

Charles Averill (UTD) Secrets of the Universe Fall 2023

Certainty in Security

Formal Verification of Simple Memory

Memory is a function:

mem(x) = contents of memory at position z

set(mem, z, data) = new memory state with data at position z

n el o v o]

Arrays are a high-level construct that live on top of memory:

array = memory state U base array address U array length

KN KN NN RS ER N N

Charles Averill (UTD) Secrets of the Universe Fall 2023

Certainty in Security

Formal Verification of Simple Memory

Accessing, writing data in an array:

array.mem(array.base_addr + index)

set(array.mem, array.base_addr + index, data)

Is this safe? Nol

Proposed safe accesses and writes:

array.mem(array.base_addr + (index mod array.size)

set(array.mem, (array.base_addr + (index mod array.size, data)

Can we prove this? Yes!

Should you trust me/the system? NO! Let's figure out why it works.

Charles Averill (UTD) Secrets of the Universe Fall 2023

https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546

Untyped Lambda Calculus

“Because Schénfinkel has in no way shown how the introduction of the

other fundamental concepts is to be avoided, and because he cannot
define them from others, he has not justified his claim. In fact he has
achieved only a new and inconvenient notation.” - Haskell Curry

Untyped Lambda Calculus

The Philosophy of Computation

Lambda Calculus is a computing model that uses simple math
definitions, instead of mechanical description of Turing Machines

LC/TM/CC came about during a rough time in mathematics
(1890-1930) when paradoxes had been found in our assumptions

Wanted to make sense of what it meant to do computation, or
represent an equation, or decide the truth value of a statement

[

Charles Averill (UTD) Secrets of the Universe Fall 2023

Untyped Lambda Calculus

Implementing the Lambda Calculus

Charles Averill (UTD) Secrets of the Universe Fall 2023

Untyped Lambda Calculus

Implementing the Lambda Calculus

In LC we have “expressions”, which can be:
Variable names (v)
Functions with single arguments, a.k.a. abstractions (A\v.e)
Applications of two other expressions ((e1)(e2))

We only need one rule to compute things: when applying two expressions,
if the left is an abstraction, take the right expression and plug it into every
occurrence of the abstraction’s variable in the abstraction’s expression.

Charles Averill (UTD) Secrets of the Universe Fall 2023

Untyped Lambda Calculus

Implementing the Lambda Calculus

Charles Averill (UTD) Secrets of the Universe Fall 2023

Untyped Lambda Calculus

Implementing the Lambda Calculus

Charles Averill (UTD) Secrets of the Universe Fall 2023

Untyped Lambda Calculus

What can we do with LC?

Charles Averill (UTD) Secrets of the Universe Fall 2023

Untyped Lambda Calculus

LC Issues

Charles Averill (UTD) Secrets of the Universe Fall 2023

Typed Lambda Calculus

“For any formal system, we can really only understand its precise
details after attempting to implement it.” - Simon Thompson

Typed Lambda Calculus

Simply-Typed Lambda Calculus

Charles Averill (UTD) Secrets of the Universe Fall 2023

Typed Lambda Calculus

Charles Averill (UTD) Secrets of the Universe Fall 2023

Typed Lambda Calculus

Examples

Charles Averill (UTD) Secrets of the Universe Fall 2023

Type Inhabitation

Type Inhabitation

Another Theoretical Thing

Let's take what seems to be a detour and think about a fun little
puzzle.

First, we will add a new type to our STLC: void. void is special,
because there is no value that has type void. Therefore, the type
void is uninhabited.

We know due to rule (2) that the expression () has type unit, so we
say that “unit is inhabited by the value ().

We can show that the type unit — unit is inhabited by the value:

AT :unit.x

Charles Averill (UTD) Secrets of the Universe Fall 2023

Type Inhabitation

Another Theoretical Thing

Charles Averill (UTD) Secrets of the Universe Fall 2023

Type Inhabitation

More Types

Very quickly, let's add some more types:

Pairs: (e1,e2). These expressions have type
typeof(e1) % typeof(ez), we call them “product types”

Constructed Types: CON1!1T2(¢) | CON2!1 T2 (¢e). These expressions
have type t; + t2, we call them “sum types”

We can’t make a pair that has a void in it, because no expression has type
void.

But, can we make a sum type with the signature unit + void?
One value of this type is CON1u et +void(())

Try showing that the following is inhabited:

unit * (unit — (void + (unit — unit)))

Charles Averill (UTD) Secrets of the Universe Fall 2023

Question Intermission

Binding Types with Logic

Binding Types with Logic

Type Checking

Remember that we had some rules about the valid types of STLC
expressions

typeof(()) : unit
typeof(v) :t; typeof(e) : to
typeof(A\v : ty.e) : t; — to
typeof(e1) : t;1 — ta typeof(ea) : t;
typeof(eies) : to

©)

The whole point of these is to be able to statically check the

program to ensure that it's well-typed (meaning we can’t use numbers
as booleans or functions or etc.)

Let's see how a simple type checker works

Charles Averill (UTD) Secrets of the Universe Fall 2023

https://github.com/CharlesAverill/lucid/blob/main/lib/typechecker.ml

Binding Types with Logic

Curry-Howard Isomorphism

Charles Averill (UTD) Secrets of the Universe Fall 2023

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:

Type Inhabited

unit True

void False
void * void False Type | Inhabited
void * unit False void — void True
unit * void False void — unit True
unit * unit True unit — void False
void + void | False unit — unit | True
void + unit True
unit + void True
unit + unit True

Charles Averill (UTD) Secrets of the Universe Fall 2023

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:

Logical Expression | Truth Value

T True

F False
FAF False Logical Expression | Truth Value
FAT False F—F True
TANF False F—T True
TANT True T— F False
FVF False T—T True
FvT True
TV F True
VT True

Charles Averill (UTD) Secrets of the Universe Fall 2023

Binding Types with Logic

Why the CHI matters

Think about that - we have

A language that natively encodes the philosophical ideas of theorems
and proofs within its types and expressions

That can be (somewhat) trivially type-checked

Its semantics are simple enough that they fit on a single presentation
slide

That means that with careful engineering, and lots of confidence from lots
of mathematicians, we can create a

high-assurance automated proof checker.

Enter Cogq.

Charles Averill (UTD) Secrets of the Universe Fall 2023

Coq

“Logic takes care of itself; all we have to do is to look and see how it
does it.” - Ludwig Wittgenstein

Coq

Coq

Coq is an automated theorem proving system, containing a
programming language called Gallina, as well as a proof language

Coq is essentially an implementation of the Curry-Howard
isomorphism, binding the concepts of types, theorems, programs, and
proofs into a cohesive lambda calculus (CiC) that allows for
high-assurance proof checking

Has an extremely small TCB hand-verified by thousands of
mathematicians for decades, and now machine-checked by the
MetaCoq project

Charles Averill (UTD) Secrets of the Universe Fall 2023

Coq

The Calculus of Inductive Constructions

Coq relies on the Calculus of Inductive Constructions (CiC or A\C), a
variant of typed lambda calculus that combines the three primary type
system additions, to provide the expressiveness necessary to state theorems
that we're interested in:

Parametric Polymorphism (type to term) - Adds a new kind of abstraction
that takes a type as input and returns an expression (Aa.e) - allows us to
express properties of generic data structures

Dependent Types (term to type) - Adds the capability to define expressions
with types that change depending on the contents of the expression (e.g.
int list 5vs int list 3) - this gives us the ability to use function
“calls” as components in our theorems, and the V operator

Type Constructors (type to type) - Adds a new kind of abstraction that
takes a type as input and returns a new type (Ilov.t) - this is necessary g
to avoid some paradoxes about the “type of types”, also gives us g
the J operator

Charles Averill (UTD) Secrets of the Universe Fall 2023

Lambda Cube

Charles Averill (UTD) Secrets of the Universe Fall 2023

https://github.com/CharlesAverill/zenith/blob/main/media/lambdacube.gif

reflexivity

reflexivity

reflexivity

Charles Averill (UTD) Secrets of the Universe Fall 2023

Breakdown

Charles Averill (UTD) Secrets of the Universe Fall 2023

Breakdown

reflexivity

reflexivity

Charles Averill (UTD) Secrets of the Universe Fall 2023

Breakdown

reflexivity

Charles Averill (UTD) Secrets of the Universe Fall 2023

	The Philosophy of Uncertainty
	Certainty in Security
	Untyped Lambda Calculus
	Typed Lambda Calculus
	Type Inhabitation
	Question Intermission
	Binding Types with Logic
	Coq

