
Verifier Of Lifted Pascal In Coq

Charles Averill

Dallas Hackers’ Association

February 2024

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



What

What am I doing?

I am building a transpiler to convert Pascal code to Coq code
Pascal: imperative, low-level, memory-managed, simple types, released
in 1970 (C++ but better)
Coq: functional, high-level, memory doesn’t exist, polymorphic and
dependent types, released in 1989 (the Universe’s gift to
Mathematicians)

I am writing a theorem library to aid in the formal verification of
Pascal programs
I am writing a ”Pascal virtual machine library” in OCaml for the
extraction of Coq programs generated from Pascal programs
I am going to write a verified Pascal standard library using these tools

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



What

Pascal Sample

program PascalSample;
type charstr_arr = array['a'..'z'] of string;
var arr : charstr_arr;

procedure print_charstr_arr(a : charstr_arr);
var c : char; begin

for c := 'a' to 'z' do
if not (a[c] = '') then

writeln(c, ': ', a[c])
end;

begin
arr['d'] := 'Dallas Hackers Association';
arr['h'] := 'Hello World!';
print_charstr_arr(arr); {

d: Dallas Hackers Association
h: Hello World!

}
end.

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



What

Coq Sample

Inductive nat : Type := O | S (n : nat).
Fixpoint add (n m : nat) := match n with

| O => m
| S n' => S (add n' m)
end.

Theorem add_0_r : forall (n : nat), add n O = n.
induction n; simpl; try rewrite IHn; reflexivity.

Qed.

Lemma plus_n_Sm : forall n m : nat, S (add n m) = add n (S m).
induction n; intros; simpl; try rewrite IHn; reflexivity.

Qed.

Theorem add_comm : forall (n m : nat), add n m = add m n.
induction n; intros; simpl.
- rewrite add_0_r. reflexivity.
- rewrite IHn, plus_n_Sm. reflexivity.

Qed.
Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



Why

Why am I doing this?

Formal Verification provides the opportunity for developers to
mathematically prove that their code is bug-free (check out my
Secrets of the Universe talk)
Lots of code is written in Pascal

Photoshop
Skype
FL Studio
A highly-cited DNA Sequence Assembler
Tons of DoD stuff we don’t know about (this is the real target of most
verification)
TeX/Metafont

I want to get a bug bounty check from Donald Knuth by verifying
TeX and Metafont
I have nothing to do from my graduation (Dec 18) to the day I leave
the country (Feb 17)

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024

https://seashell.charles.systems/teaching/sotu.pdf


How

How am I doing this?

The short answer: lots of painful strong-arming and engineering
1. Process: Utilize the Free Pascal Compiler (FPC) to provide a

structured, traversable form of the Pascal program
2. Lift: Transpile structured Pascal program to Coq
3. Verify: Write proofs about lifted Coq program
4. Extract: Convert lifted Coq program into equivalent OCaml or

Haskell code

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



How

Workflow

Coq
Program

Pascal
Program

Free Pascal
Compiler

VOLPIC

FPC Parse
Tree

Coq
Proof
Objects Proofs Written

about Program

Pascal
Binary

OCaml Binary

Functionally
Equivalent

Verification
Guarantee

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



How

Issues

Believe it or not, this task is complicated. Some issues I’ve run into:
FPC parse tree output is more like a log file than a language, making
it extremely difficult to parse. Here’s the state of my parser:

opam exec -- menhir -v lib/lang/parser.mly
Warning: 12 states have shift/reduce conflicts.
Warning: one state has reduce/reduce conflicts.
Warning: 17 shift/reduce conflicts were arbitrarily resolved.
Warning: 3 reduce/reduce conflicts were arbitrarily resolved.
Warning: 6 end-of-stream conflicts were arbitrarily resolved.

Pascal is imperative and mutable, Coq is functional and immutable
Dependent typing necessary to achieve language expressivity while
maintaining mutability
Pascal is way more complex than something like C, so there are a ton
of fairly-complex language features to support

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



How

Lifter Structure

The lifter essentially does the following:
1. Call out to FPC to compile program and get parse tree
2. parser.mly parses the tree into an OCaml object for manipulation
3. converter.ml translates Pascal language concepts into Coq

language concepts, generating a new OCaml object
4. generator.ml traverses the new object and prints out corresponding

Coq code
I was initially very excited to write the generator, planned to hook into
the Coq compiler at runtime and feed it ASTs that it converts to strings
Coq compiler API doesn’t seem like it is built for that, had to resort to
bare string manipulation T_T

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



Cool Things

FPC Contributions

After writing parser I began to write test programs
Thought project was dead when I realized that FPC parse tree output
didn’t include key info such as string constants or struct access field
names
Remembered that I work on compilers all the time
Wrote and merged FPC MR 567, commits cd9ed54d and bb2e2f83 to
add the features I needed to the compiler

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024

https://gitlab.com/freepascal.org/fpc/source/-/merge_requests/567
https://gitlab.com/freepascal.org/fpc/source/-/commit/cd9ed54d35fc4573b4adafde00979b15473749e5
https://gitlab.com/freepascal.org/fpc/source/-/commit/bb2e2f83e9087ecbd5f5f652c877e694e00660ae


Cool Things

Dependent Typing

Dependent typing is really neat now that I have the base knowledge
to understand what’s going on
You’re probably familiar with parametric polymorphism and maybe
type constructors

(* Type Constructors *)
Inductive list (T : Type) : Type := nil | cons (h : T) (t : list T).

(* Parametric Polymorphism *)
Definition hd {T : Type} (l : list T) : option T :=

match l with
| nil _ => None
| cons _ h t => Some h end.

(* Dependent Types *)
Definition list_or_string (b : bool) :

(match b with true => list int | false => string end) :=
match b with true => [99;55;-500] | false => "Hello World" end.

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



Cool Things

I’m not the first

I’m not the first person to attempt to verify Pascal code
Donald Knuth considered formally verifying the TeX/Metafont
compilers in tripman.tex, a ”torture test” for TeX
John Nagle (of Nagle’s TCP Algorithm fame) worked on pasv, an
early (pre-Coq) formal verification system specifically for Pascal

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024

ftp://ftp.cs.stanford.edu/pub/tex/tex/tripman.tex
https://github.com/John-Nagle/pasv


Cool Things

Demo

I have achieved:
Lifting Pascal to Coq
Extracting Coq to OCaml
A half-complete proof of correctness

Caveats:
Array accesses are broken and require manual correction
Output OCaml code is kinda slow

My goal was to show off a lifted and verified linear search, binary search,
and bubble sort. I have lifted copies of these, but due to time constraints I
will only be showing off a modified and unverified linear search.

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



Cool Things

Future Plans

Easiest: add more features
Better handling of user-defined data types
Support for record types
Figure out how I’ll handle function calls
Implement more FPC functions

Harder: write proofs of correctness for some unedited, lifted sample
programs

Searches and sorts
Common array functions
More complex math functions
Small applications

Hardest: write proofs of correctness for TeX and MF
Only ~9% of functions lift without error
Most failures to lift caused by unsupported language features such as
special loop forms, array/struct assignments, etc.

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024



Cool Things

Thank you!

Source code: https://github.com/CharlesAverill/VOLPIC
FPC Branch: https://gitlab.com/CharlesAverill/source

Github mirror: https://github.com/CharlesAverill/fpc-source
https://seashell.charles.systems/
(or https://charlesaverill.github.io/ if it’s down)
Bluesky: @caverill.bsky.social
Chess.com: https://friend.chess.com/Axt9x

Charles Averill (DHA) Verifier Of Lifted Pascal In Coq February 2024

https://github.com/CharlesAverill/VOLPIC
https://gitlab.com/CharlesAverill/source
https://github.com/CharlesAverill/fpc-source
https://seashell.charles.systems/
https://charlesaverill.github.io/
https://bsky.app/profile/caverill.bsky.social
https://friend.chess.com/Axt9x

	What
	Why
	How
	Cool Things

